收藏 | 200种机器学习教程汇总!非常全面!

2018 年 10 月 10 日 THU数据派


来源:云栖社区

本文多资源建议阅读收藏。

本文精挑细选了包括机器学习、NLP、Python和数学的最佳教程。


[ 导读 ]不吹不黑,绝对史上最全的机器学习学习材料!本文包含了迄今为止大家公认的最佳教程内容。它绝不是网上每个ML相关教程的详尽列表,而是经过精挑细选而成的,毕竟网上的东西并不全是好的。作者汇总的目标是为了补充我即将出版的新书,为它寻找在机器学习和NLP领域中找到的最佳教程。


通过这些最佳教程的汇总,我可以快速的找到我想要得到的教程。从而避免了阅读更广泛覆盖范围的书籍章节和苦恼的研究论文,你也许知道,当你的数学功底不是很好的时候这些论文你通常是拿不下的。为什么不买书呢?没有哪一个作者是一个全能先生。当你尝试学习特定的主题或想要获得不同的观点时,教程可能是非常有帮助的。



我将这篇文章分为四个部分:


  • 机器学习

  • NLP

  • Python

  • 数学


我在每个部分都包含了一些主题,但由于机器学习是一个非常复杂的学科,我不可能包含所有可能的主题。


如果有很好的教程你知道我错过了,请告诉我!我将继续完善这个学习教程。我在挑选这些链接的时候,都试图保证每个链接应该具有与其他链接不同的材料或以不同的方式呈现信息(例如,代码与幻灯片)或从不同的角度。


机器学习


  • 从机器学习入手

    https://machinelearningmastery.com/start-here/

  • 机器学习很有趣!

    https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471

  • 机器学习规则:ML工程的最佳实践

    http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf

  • 机器学习速成课程:第一部分,第二部分,第三部分(伯克利机器学习)

    https://ml.berkeley.edu/blog/2016/11/06/tutorial-1/

    https://ml.berkeley.edu/blog/2016/12/24/tutorial-2/

    https://ml.berkeley.edu/blog/2017/02/04/tutorial-3/

  • 机器学习理论及其应用简介:用一个小例子进行视觉教程

    https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer

  • 机器学习的简单指南

    https://monkeylearn.com/blog/a-gentle-guide-to-machine-learning/

  • 我应该使用哪种机器学习算法?

    https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

  • 机器学习入门

    https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/machine-learning-primer-108796.pdf

  • 初学者机器学习教程

    https://www.kaggle.com/kanncaa1/machine-learning-tutorial-for-beginners


激活函数和Dropout函数


  • Sigmoid神经元

    http://neuralnetworksanddeeplearning.com/chap1.html

  • 激活函数在神经网络中的作用是什么?

    https://www.quora.com/What-is-the-role-of-the-activation-function-in-a-neural-network

  • 神经网络中常见的激活函数的优缺点比较列表

    https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons

  • 激活函数及其类型对比

    https://medium.com/towards-data-science/activation-functions-and-its-types-which-is-better-a9a5310cc8f

  • 理解对数损失

    http://www.exegetic.biz/blog/2015/12/making-sense-logarithmic-loss/

  • 损失函数(斯坦福CS231n)

    http://cs231n.github.io/neural-networks-2/

  • L1与L2损失函数

    http://rishy.github.io/ml/2015/07/28/l1-vs-l2-loss/

  • 交叉熵成本函数

    http://neuralnetworksanddeeplearning.com/chap3.html


偏差(bias)


  • 偏差在神经网络中的作用

    https://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks/2499936

  • 神经网络中的偏差节点

    http://makeyourownneuralnetwork.blogspot.com/2016/06/bias-nodes-in-neural-networks.html

  • 什么是人工神经网络的偏差?

    https://www.quora.com/What-is-bias-in-artificial-neural-network


感知器


  • 感知器

    http://neuralnetworksanddeeplearning.com/chap1.html

  • 感知器

    http://natureofcode.com/book/chapter-10-neural-networks/

  • 单层神经网络(感知器)

    http://computing.dcu.ie/~humphrys/Notes/Neural/single.neural.html

  • 从Perceptrons到Deep Networks

    https://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks


回归


  • 线性回归分析介绍

    http://people.duke.edu/~rnau/regintro.htm

  • 线性回归

    http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/

  • 线性回归

    http://ml-cheatsheet.readthedocs.io/en/latest/linear_regression.html

  • Logistic回归

    http://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html

  • 机器学习的简单线性回归教程

    http://machinelearningmastery.com/simple-linear-regression-tutorial-for-machine-learning/

  • 机器学习的Logistic回归教程

    http://machinelearningmastery.com/logistic-regression-tutorial-for-machine-learning/

  • Softmax回归

    http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/


梯度下降


  • 在梯度下降中学习

    http://neuralnetworksanddeeplearning.com/chap1.html

  • 梯度下降

    http://iamtrask.github.io/2015/07/27/python-network-part2/

  • 如何理解梯度下降算法

    http://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html

  • 梯度下降优化算法概述

    http://sebastianruder.com/optimizing-gradient-descent/

  • 优化:随机梯度下降(斯坦福CS231n)

    http://cs231n.github.io/optimization-1/


生成学习(GenerativeLearning)


  • 生成学习算法(斯坦福CS229)

    http://cs229.stanford.edu/notes/cs229-notes2.pdf

  • 朴素贝叶斯分类器的实用解释

    https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier/

    https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier/


支持向量机


  • 支持向量机(SVM)简介

    https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/

  • 支持向量机(斯坦福CS229)

    http://cs229.stanford.edu/notes/cs229-notes3.pdf

  • 线性分类:支持向量机,Softmax

    http://cs231n.github.io/linear-classify/


反向传播


  • 你应该了解的backprop

    medium.com/@karpathy

  • 你能给出神经网络反向传播算法的直观解释吗?

    https://github.com/rasbt/python-machine-learning-book/blob/master/faq/visual-backpropagation.md

  • 反向传播算法的工作原理

    http://neuralnetworksanddeeplearning.com/chap2.html

  • 通过时间反向传播和消失的渐变

    http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

    http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

  • 时间反向传播的简单介绍

    http://machinelearningmastery.com/gentle-introduction-backpropagation-time/

  • 反向传播,直觉(斯坦福CS231n)

    http://cs231n.github.io/optimization-2/


深度学习


  • YN²深度学习指南

    http://cs231n.github.io/optimization-2/

  • 深度学习论文阅读路线图

    https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap

  • Nutshell中的深度学习

    http://nikhilbuduma.com/2014/12/29/deep-learning-in-a-nutshell/

  • 深度学习教程

    http://ai.stanford.edu/~quocle/tutorial1.pdf

  • 什么是深度学习?

    http://machinelearningmastery.com/what-is-deep-learning/

  • 人工智能,机器学习和深度学习之间有什么区别?

    https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

  • 深度学习–简单介绍 

    https://gluon.mxnet.io/


最优化和降维


  • 数据降维减少的七种技术

    https://www.knime.org/blog/seven-techniques-for-data-dimensionality-reduction

  • 主成分分析(斯坦福CS229)

    http://cs229.stanford.edu/notes/cs229-notes10.pdf

  • Dropout:一种改善神经网络的简单方法

    http://videolectures.net/site/normal_dl/tag=741100/nips2012_hinton_networks_01.pdf

  • 如何训练你的深度神经网络?

    http://rishy.github.io/ml/2017/01/05/how-to-train-your-dnn/


长短期记忆(LSTM)


  • 长短期记忆网络的通俗介绍

    http://machinelearningmastery.com/gentle-introduction-long-short-term-memory-networks-experts/

  • 了解LSTM 神经网络Networks

    http://colah.github.io/posts/2015-08-Understanding-LSTMs/

  • 探索LSTM

    http://blog.echen.me/2017/05/30/exploring-lstms/

  • 任何人都可以学习用Python编写LSTM-RNN

    http://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/

    http://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/


卷积神经网络(CNN)


  • 卷积网络介绍

    http://neuralnetworksanddeeplearning.com/chap6.html

  • 深度学习和卷积神经网络

    https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721

  • Conv Nets:模块化视角

    http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

  • 了解卷积

    http://colah.github.io/posts/2014-07-Understanding-Convolutions/


递归神经网络(RNN)


  • 递归神经网络教程

    http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

  • 注意和增强的递归神经网络

    http://distill.pub/2016/augmented-rnns/

  • 递归神经网络的不合理有效性

    http://karpathy.github.io/2015/05/21/rnn-effectiveness/

  • 深入了解递归神经网络

    http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/

    http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/


强化学习


  • 强化学习初学者入门及其实施指南

    https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/

  • 强化学习教程

    https://web.mst.edu/~gosavia/tutorial.pdf

  • 学习强化学习

    http://www.wildml.com/2016/10/learning-reinforcement-learning/

  • 深度强化学习:来自像素的乒乓球

    http://karpathy.github.io/2016/05/31/rl/


生成对抗网络(GAN)


  • 对抗机器学习简介

    https://aaai18adversarial.github.io/slides/AML.pptx

  • 什么是生成性对抗网络?

    https://blogs.nvidia.com/blog/2017/05/17/generative-adversarial-network/

  • 滥用生成对抗网络制作8位像素艺术

    https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

  • Generative Adversarial Networks简介(TensorFlow中的代码)

    http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/

  • 初学者的生成对抗网络

    https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners


多任务学习


  • 深度神经网络中多任务学习概述

    http://sebastianruder.com/multi-task/index.html


NLP


  • 自然语言处理很有趣!

    https://medium.com/@ageitgey/natural-language-processing-is-fun-9a0bff37854e

  • 自然语言处理神经网络模型入门

    http://u.cs.biu.ac.il/~yogo/nnlp.pdf

  • 自然语言处理权威指南

    https://monkeylearn.com/blog/the-definitive-guide-to-natural-language-processing/

  • 自然语言处理简介

    https://blog.algorithmia.com/introduction-natural-language-processing-nlp/

  • 自然语言处理教程

    http://www.vikparuchuri.com/blog/natural-language-processing-tutorial/

  • 自然语言处理(NLP)来自Scratch

    https://arxiv.org/pdf/1103.0398.pdf


深度学习和NLP


  • 深度学习适用于NLP

    https://arxiv.org/pdf/1703.03091.pdf

  • NLP的深度学习(没有魔法)

    https://nlp.stanford.edu/courses/NAACL2013/NAACL2013-Socher-Manning-DeepLearning.pdf

  • 了解NLP的卷积神经网络

    http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

  • 深度学习、NLP、表示

    http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

  • 最先进的NLP模型的新深度学习公式:嵌入、编码、参与、预测

    https://explosion.ai/blog/deep-learning-formula-nlp

  • 使用Torch深度神经网络进行自然语言处理

    https://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/

  • 使用Pytorch进行深度学习NLP

    http://pytorch.org/tutorials/beginner/deep_learning_nlp_tutorial.html


词向量


  • 使用词袋模型解决电影评论分类

    https://www.kaggle.com/c/word2vec-nlp-tutorial

  • 词嵌入介绍第一部分,第二部分,第三部分

    http://sebastianruder.com/word-embeddings-1/index.html

    http://sebastianruder.com/word-embeddings-softmax/index.html

    http://sebastianruder.com/secret-word2vec/index.html

  • 词向量的惊人力量

    https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

  • word2vec参数学习解释

    https://arxiv.org/pdf/1411.2738.pdf

  • Word2Vec教程- Skip-Gram模型,负抽样

    http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

    http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/


编码器-解码器


  • 深度学习和NLP中的注意力机制和记忆力模型

    http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/

  • 序列模型

    tensorflow.org

  • 使用神经网络进行序列学习

    https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

  • 机器学习很有趣第五部分:深度学习的语言翻译和序列的魔力

    https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa

  • 如何使用编码器-解码器LSTM来回显随机整数序列

    http://machinelearningmastery.com/how-to-use-an-encoder-decoder-lstm-to-echo-sequences-of-random-integers/

  • tf-seq2seq

    https://google.github.io/seq2seq/


Python


  • 机器学习速成课程

    https://developers.google.com/machine-learning/crash-course/

  • 令人敬畏的机器学习

    https://github.com/josephmisiti/awesome-machine-learning

  • 使用Python掌握机器学习的7个步骤

    http://www.kdnuggets.com/2015/11/seven-steps-machine-learning-python.html

  • 一个示例机器学习笔记

    http://nbviewer.jupyter.org/github/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb

  • 使用Python进行机器学习

    https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_quick_guide.htm


实战案例


  • 如何在Python中从头开始实现感知器算法

    http://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/

  • 在Python中使用Scratch实现神经网络

    http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/

  • 使用11行代码在Python中实现神经网络

    http://iamtrask.github.io/2015/07/12/basic-python-network/

  • 使用Python实现你自己的k-Nearest Neighbor算法

    http://www.kdnuggets.com/2016/01/implementing-your-own-knn-using-python.html

  • 来自Scatch的ML

    https://github.com/eriklindernoren/ML-From-Scratch

  • Python机器学习(第2版)代码库

    https://github.com/rasbt/python-machine-learning-book-2nd-edition


Scipy和numpy


  • Scipy讲义

    http://www.scipy-lectures.org/

  • Python Numpy教程

    http://cs231n.github.io/python-numpy-tutorial/

  • Numpy和Scipy简介

    https://engineering.ucsb.edu/~shell/che210d/numpy.pdf

  • Python中的科学家速成课程

    http://nbviewer.jupyter.org/gist/rpmuller/5920182

    http://nbviewer.jupyter.org/gist/rpmuller/5920182


scikit学习


  • PyCon scikit-learn教程索引

    http://nbviewer.jupyter.org/github/jakevdp/sklearn_pycon2015/blob/master/notebooks/Index.ipynb

  • scikit-learn分类算法

    https://github.com/mmmayo13/scikit-learn-classifiers/blob/master/sklearn-classifiers-tutorial.ipynb

  • scikit-learn教程

    http://scikit-learn.org/stable/tutorial/index.html

  • 简短的scikit-learn教程

    https://github.com/mmmayo13/scikit-learn-beginners-tutorials


Tensorflow


  • Tensorflow教程

    https://www.tensorflow.org/tutorials/

  • TensorFlow简介 - CPU与GPU

    https://medium.com/@erikhallstrm/hello-world-tensorflow-649b15aed18c

  • TensorFlow

    https://blog.metaflow.fr/tensorflow-a-primer-4b3fa0978be3

  • Tensorflow中的RNN

    http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/

  • 在TensorFlow中实现CNN进行文本分类

    http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/

  • 如何使用TensorFlow运行文本摘要

    http://pavel.surmenok.com/2016/10/15/how-to-run-text-summarization-with-tensorflow/


PyTorch


  • PyTorch教程

    http://pytorch.org/tutorials/

  • PyTorch的简单介绍

    http://blog.gaurav.im/2017/04/24/a-gentle-intro-to-pytorch/

  • 教程:PyTorch中的深度学习

    https://iamtrask.github.io/2017/01/15/pytorch-tutorial/

  • PyTorch示例

    https://github.com/jcjohnson/pytorch-examples

  • PyTorch教程

    https://github.com/MorvanZhou/PyTorch-Tutorial

  • 深度学习研究人员的PyTorch教程

    https://github.com/yunjey/pytorch-tutorial


数学


  • 机器学习数学

    https://people.ucsc.edu/~praman1/static/pub/math-for-ml.pdf

  • 机器学习数学

    http://www.umiacs.umd.edu/~hal/courses/2013S_ML/math4ml.pdf


线性代数


  • 线性代数直观指南

    https://betterexplained.com/articles/linear-algebra-guide/

  • 程序员对矩阵乘法的直觉

    https://betterexplained.com/articles/matrix-multiplication/

  • 了解Cross产品

    https://betterexplained.com/articles/cross-product/

  • 了解Dot产品

    https://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/

  • 用于机器学习的线性代数(布法罗大学CSE574)http://www.cedar.buffalo.edu/~srihari/CSE574/Chap1/LinearAlgebra.pdf

  • 用于深度学习的线性代数备忘单

    https://medium.com/towards-data-science/linear-algebra-cheat-sheet-for-deep-learning-cd67aba4526c

  • 线性代数评论与参考

    http://cs229.stanford.edu/section/cs229-linalg.pdf


概率论


  • 用比率理解贝叶斯定理

    https://betterexplained.com/articles/understanding-bayes-theorem-with-ratios/

  • 概率论入门

    http://cs229.stanford.edu/section/cs229-prob.pdf

  • 机器学习的概率论教程

    https://see.stanford.edu/materials/aimlcs229/cs229-prob.pdf

  • 概率论(布法罗大学CSE574)

    http://www.cedar.buffalo.edu/~srihari/CSE574/Chap1/Probability-Theory.pdf

  • 机器学习的概率论(多伦多大学CSC411)

    http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/tutorial1.pdf


微积分


  • 如何理解导数:商数规则,指数和对数

    https://betterexplained.com/articles/how-to-understand-derivatives-the-quotient-rule-exponents-and-logarithms/

  • 如何理解导数:产品,动力和链条规则

    (betterexplained.com)

    https://betterexplained.com/articles/derivatives-product-power-chain/

  • 矢量微积分:了解渐变

    https://betterexplained.com/articles/vector-calculus-understanding-the-gradient/

  • 微分学(斯坦福CS224n)

    http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-review-differential-calculus.pdf

  • 微积分概述

    http://ml-cheatsheet.readthedocs.io/en/latest/calculus.html


原文标题:

《over-200-of-the-best-machine-learning-nlp-and-python-tutorials-2018-edition》

原文作者:

Robbie Allen


登录查看更多
2

相关内容

简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
341+阅读 · 2020年3月17日
机器学习速查手册,135页pdf
专知会员服务
341+阅读 · 2020年3月15日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
203+阅读 · 2020年2月24日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
127+阅读 · 2019年11月25日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
吐血整理!10 个机器学习教程汇总,爱可可推荐!
大数据技术
16+阅读 · 2019年9月2日
【干货】史上最全的PyTorch学习资源汇总
深度学习与NLP
24+阅读 · 2019年5月18日
Github库分享:超全的PyTorch学习资源汇总
专知
21+阅读 · 2019年5月9日
【2018最新版】 200个机器学习 && NLP && Python 相关教程
机器学习算法与Python学习
6+阅读 · 2018年8月2日
教程推荐 | 机器学习、Python等最好的150余个教程
七月在线实验室
7+阅读 · 2018年6月6日
收藏!超全机器学习资料合集!(附下载)
数据派THU
14+阅读 · 2018年1月8日
150 多个 ML、NLP 和 Python 相关的教程
Python开发者
14+阅读 · 2017年8月15日
资源 | 值得收藏的 27 个机器学习的小抄
AI100
3+阅读 · 2017年8月12日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
22+阅读 · 2018年8月30日
VIP会员
相关VIP内容
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
341+阅读 · 2020年3月17日
机器学习速查手册,135页pdf
专知会员服务
341+阅读 · 2020年3月15日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
203+阅读 · 2020年2月24日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
127+阅读 · 2019年11月25日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
吐血整理!10 个机器学习教程汇总,爱可可推荐!
大数据技术
16+阅读 · 2019年9月2日
【干货】史上最全的PyTorch学习资源汇总
深度学习与NLP
24+阅读 · 2019年5月18日
Github库分享:超全的PyTorch学习资源汇总
专知
21+阅读 · 2019年5月9日
【2018最新版】 200个机器学习 && NLP && Python 相关教程
机器学习算法与Python学习
6+阅读 · 2018年8月2日
教程推荐 | 机器学习、Python等最好的150余个教程
七月在线实验室
7+阅读 · 2018年6月6日
收藏!超全机器学习资料合集!(附下载)
数据派THU
14+阅读 · 2018年1月8日
150 多个 ML、NLP 和 Python 相关的教程
Python开发者
14+阅读 · 2017年8月15日
资源 | 值得收藏的 27 个机器学习的小抄
AI100
3+阅读 · 2017年8月12日
相关论文
Arxiv
38+阅读 · 2020年3月10日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
22+阅读 · 2018年8月30日
Top
微信扫码咨询专知VIP会员