虚构的对抗:GAN with the wind

2017 年 10 月 23 日 大数据文摘


本文授权转载自:老顾谈几何

作者:顾险峰

编辑:韩蕊



在过去的两三年中,对抗生成网络(Generative Adersarial Network GAN)获得了爆炸式的增长,其应用范围几乎涵盖了图像处理和机器视觉的绝大多数领域。其精妙独到的构思,令人拍案叫绝;其绚烂逼真的效果,令众生颠倒。一时间对抗生成网络引发了澎湃汹涌的技术风潮,纳什均衡的概念风靡了整个人工智能领域。

 Goodfellow于2014年提出了GAN的概念,他的解释如下:GAN的核心思想是构造两个深度神经网络:判别器D和生成器G,用户为GAN提供一些真实货币作为训练样本,生成器G生成假币来欺骗判别器D,判别器D判断一张货币是否来自真实样本还是G生成的伪币;判别器和生成器交替训练,能力在博弈中同步提高,最后达到平衡点的时候判别器无法区分样本的真伪,生成器的伪造功能炉火纯青,生成的货币几可乱真。这种阴阳互补,相克相生的设计理念为GAN的学说增添了魅力。

GAN模型的优点来自于自主生成数据。机器学习的关键在于海量的数据样本,GAN自身可以生成不尽的样本,从而极大地减少了对于训练数据的需求,因此极其适合无监督学习;GAN的另外一个优点是对于所学习的概率分布要求非常宽泛,这一概率分布由训练数据的测度分布来表达,不需要有显式的数学表示。

GAN虽然在工程实践中取得巨大的成功,但是缺乏严格的理论基础。大量的几何假设,都是仰仗似是而非的观念;其运作的内在机理,也是依据肤浅唯像的经验解释。丘成桐先生率领团队在学习算法的基础理论方面进行着不懈的探索。我们用最优传输(Optimal mass Transportation)理论框架来阐释对抗生成模型,同时用凸几何(Convex Geometry)的基础理论来为最优传输理论建立几何图景。通过理论验证,我们发现关于对抗生成模型的一些基本观念有待商榷:理论上,Wasserstein GAN中生成器和识别器的竞争是没有必要的,生成器网络和识别器网络的交替训练是徒劳的,此消彼长的对抗是虚构的。最优的识别器训练出来之后,生成器可以由简单的数学公式所直接得到。详细的数学推导和实验结果可以在图7中找到。

下面,我们就这一观察展开详细论述。我们首先分析WGAN的理论框架;然后简介最优传输理论,解释生成器和判别器的主要任务;我们再介绍凸几何中的基本定理,解释凸几何和最优传输的内在联系,用计算几何的语言来解释最优传输框架下的基本概念;初步试验结果比较了WGAN和几何方法;最后我们进行一些扼要的讨论。

规模宏大的随机数生成器


大家对于随机数的生成原理耳熟能详,GAN本质上可以被视作是一个规模宏大的随机数生成器。我们考察最为简单的线性同余生成算法

这里是比较大的整数,那么构成了单位区间上的均匀分布(uniform distributed)伪随机数。我们再来生成单位圆盘上的高斯分布的随机采样点:首先生成,然后定义映射

由此可见,我们可以通过一个变换将均匀分布变换成高斯分布。如果我们将概率分布看成是某种质量密度,映射会带来面积的变化,因此带来密度的变化,这样就从一种概率分布变换成另外一种概率分布。图2. GAN本质上是将一种概率分布(高斯分布)变成另外一种概率分布(人脸图像)。

在图像生成应用中,GAN模型本质上就是将一种固定的概率分布,例如均匀分布或者高斯分布,变换成训练数据所蕴含的概率分布,例如人脸图像的分布。GAN的理想数学模型如下:我们将所有图像构成一个空间,记为图像空间,每一张图像看成是空间中的一个点,。我们用来表示图片是否表达一张人脸的概率,那么就是GAN要学习的目标概率测度。在工程实践中,我们只有一些人脸图像的样本,这些样本构成了经验分布作为的近似。经验分布的公式表达为:

       

绝大多数图片并不是人脸图像,因此的支撑集合

是图像空间中的一个子流形,的维数远远小于图像空间的维数。支撑集流形的参数空间等价于特征空间,或者隐空间(latent space)。编码映射(encoding map)就是将映到特征空间,解码映射(decoding map)就是将特征空间映到支撑集流形

 图3. WGAN【3】的理论框架。


假设在隐空间有一个固定的概率分布,例如高斯分布或者均匀分布。我们用一个深度神经网络来逼近解码映射映成了图像空间中的概率分布

我们称为生成分布。判别器的核心任务是计算训练数据分布和生成分布之间的距离;生成器的目的在于调节使得生成分布尽量接近数据分布。那么,如何计算分布间的距离呢?如何最优化映射呢?这需要用到最优传输理论。

最优传输理论梗概


给定带有概率测度的空间,具有相同的总质量,。一个映射被称为是保持测度,如果对于一切可测集合,我们都有

记为。给定距离函数,代表两点间的某种距离,传输映射的传输代价函数为:

蒙日问题 法国数学家蒙日于18世纪提出了最优传输映射问题:如何找到保测度的映射,使得传输代价最小,

这种映射被称为是最优传输映射(Optimal Mass Transportation Map)。最优传输映射对应的传输代价被称为是概率测度之间的Wasserstein距离:

Kantorovich 对偶问题 Kantorovich证明了蒙日问题解的存在性唯一性,并且发明了线性规划(Linear Programming),为此于1975年获得了诺贝尔经济奖。由线性规划的对偶性,Kantorovich给出了Wasserstein距离的对偶方法:

等价的,我们将换成的c-变换,,那么Wasserstein距离为:

这里被称为是Kantorovich势能

WGAN模型 在WGAN【3】中,判别器计算测度间的Wasserstein距离就是利用上式:这里距离函数为,可以证明如果Kantorovich势能为1-Lipsitz,那么。这里Kantorovich势能由一个深度神经网络来计算,记为。Wasserstein距离为

生成器极小化Wasserstein距离,。所以整个WGAN进行极小-极大优化:

生成器极大化,判别器极小化,各自由一个深度网络交替完成。在优化过程中,解码映射和Kantorovich势能函数彼此独立。

Brenier方法 Brenier理论【4】表明如果距离函数为 ,那么存在凸函数,被称为是Brenier势能,最优传输映射由Brenier势能的梯度映射给出,。由保测度条件,Brenier势能函数满足所谓的蒙日-安培方程:

 

关键在于,Brenier势能和Kantorovich势能满足简单的关系:

判别器计算Kantorovich势能,生成器计算Brenier势能。在实际优化中,判别器优化后,生成器可以直接推导出来,不必再经过优化过程。

凸几何理论梗概


最优传输的Brenier理论和凸几何理论中的Alexandrov定理彼此等价,它们都由蒙日-安培方程来刻画。


图4. Minkowski问题和Alexandrov问题


Minkowski 定理 如图4所示,左帧显示了经典的Minkowski定理:给定每个面的法向量和面积,满足条件,那么凸多面体存在,并且彼此相差一个平移。这一定理在任意维欧氏空间都成立。

Alexandrov 定理 右帧显示了Alexandrov定理【2】:假设是平面上的一个凸区域,是开放凸多面体,每个面的法向量给定,每个面在上的投影面积给定,满足,那么凸多面体存在,并且彼此相差一个垂直平移。这一定理在任意维欧氏空间都成立。Alexandrov于1950年代证明了这个定理,他的证明是基于代数拓扑的抽象存在性方法,无法转化成构造性算法。

变分原理 我们在【6】中给出了一个基于变分原理的构造性算法。假设第i个面的梯度给定,高度未知,这个面的方程为。这些面的上包络(upper envelope)构成了Alexandrov凸多面体,也是凸分片线性函数

的图(graph),这里向量代表所有支撑平面的高度。上包络向平面投影,得到的一个胞腔分解,

 

胞腔是第i个面在上的投影,其面积记为。那么,我们定义Alexandrov势能为:

可以证明Alexandrov势能为凹函数,其极大值点给出的高度,就是Alexandrov定理中的解。

Alexandrov定理和最优传输



图5. Alexandrov定理和最优传输映射。

凸几何中的Alexandrov定理和最优传输理论中的Brenier定理本质是一致的,如图5所示,带测度的源区域为,目标为带狄拉克测度的离散点集

,

我们构造一个Alexandrov凸多面体,每个面的投影面积满足 ,那么这个凸多面体对应的分片线性凸函数就是Brenier势能函数,梯度映射

就是最优传输映射,Alexandrov势能函数就是传输代价,也等价于Wasserstein距离,即

计算几何的语言


图6. Power Diagram

Brenier定理和Alexandrov定理可以用计算几何中人所周知的Power Diagram语言来描述,这样有利于进一步理解和算法设计。如图6所示,我们为每个目标点配上一个红色的小圆,半径的平方被称为是power 权重。那么power距离定义为

由此,我们定义Power Diagram  ,这里

通过调节power 权重,我们可以使得每个胞腔的测度等于。综上所述,我们有如下最优传输的几何解释:

  1. 生成器:最优映射等价于Power胞腔分解,将每个胞腔映到

  2. 判别器:Wasserstein距离中中的等于power 权重,

  3. 判别器:Wasserstein距离Kantorovich势能等于power距离,


  4. 生成器:Brenier势能等于Power Diagram的上包络。

初步实验设计和结果


WGAN的主要功能有两个:

1. 编码、解码实现从隐空间到图像空间的变换

2. 概率测度的变换

这两个任务都是高度非线性的,关于测度变换数学上已经建立了严格的基础理论,我们可以进行定量研究;关于从隐空间到图像空间的变换,目前的理论基础比较薄弱,我们只能进行定性比较。

为此,我们设计了两个尽可能简单的实验,来分别验证这两个功能:

测度变换实验 给定实验数据分布 我们的几何算法给出了精确解,我们试图用WGAN来解决同样的问题,进行详细比较。为了排除编码、解码映射的影响,我们设计隐空间和图像空间重合,因此WGAN只计算了测度变换。

我们在这里,进行了两个实验,第一个实验的训练样本只有一个团簇,WGAN的生成分布和数据分布吻合得非常好。

图7. WGAN计算结果

为了可视化计算结果,我们在平面上设计了非常简单的实验,隐空间的概率分布为均匀分布。如图7所示,蓝色点代表数据样本,橙色点代表WGAN生成的样本。数据样本分成两个团簇,符合Gaussain Mixture的分布。我们看到WGAN最后的学习结果并不令人满意,橙色点的分布和蓝色点的分布相距甚远。


图8.几何方法计算结果

图8显示了几何方法生成的结果:每个胞腔映到一个具有同样颜色数据样本,上包络的面和它的投影胞腔具有同样的颜色。我们可以看到,首先最优传输映射将单位圆盘映射到所有的数据样本;其次,所有的power 胞腔都具有相同的面积,这意味着几何方法完美地生成了经验分布  。我们注意到,Brenier势能函数(上包络)有一个尖脊,将梯度分成了两个团簇,因此能够处理多个团簇的分布逼近问题。

我们认为基本原因如下:WGAN用深度神经网络来构造测度变换映射,深度神经网络所能表达的函数为线性映射和ReLu的复合,因此必为连续映射。但是,由于数据样本构成为多个团簇,真正的最优传输映射必是非连续的映射,因此问题的解并不包含在深度神经网络构成的泛函空间中。

图9. 弥勒佛曲面


图10. 几何方法构造的编码映射:左侧是保角变换,右侧是保面积映射,两者之间相差一个最优传输映射。


解码映射 我们设计的第二个实验更为复杂。我们将三维欧氏空间视为图像空间,弥勒佛曲面作为子流形,二维欧氏平面作为隐空间。我们的目的是做一个生成器,生成在曲面上的均匀分布。这里,子流形的几何比较复杂,我们先用几何中的Ricci流【5】的方法计算编码映射,将曲面映入到特征空间上, 映射将曲面的面元映到隐平面上面, 诱导了平面上的测度由曲面的共形因子来描述,如图10左帧所示。然后,我们计算隐空间到自身的最优传输映射,将均匀分布映射到由曲面共形因子定义的概率测度(即曲面上的面元),这样就得到从曲面到隐平面的保面元映射,得到图10右帧所示。


图11. 共形映射诱导的曲面上非均匀分布。


图12. 最优传输映射诱导的曲面上均匀分布。

从图11我们看到,隐空间上的均匀分布被共形映射拉回到上,不再是均匀分布;图12显示,复合了最优传输映射之后,隐空间上的均匀分布被保面元映射拉回到上依然是均匀分布。由此,我们用几何方法构造了曲面上均匀分布的生成器。

但是,我们用同样的数据样本来训练WGAN模型,但是很难得到有意义的结果。如果读者有兴趣用其他深度学习模型进行研究探索,我们非常乐于分享这些数据,共同探讨提高。


讨论


在最优传输理论中,如果距离函数是,这里是严格凸的函数,那么判别器的Kantorovich势能函数蕴含着最优传输映射,因此判别器和生成器之间的竞争没有必要。生成模型的最终目的是生成的概率分布,对于同一个目标概率分布,有无穷多个传输映射都可以生成。我们可以选择计算最为简单的一个,即距离所诱导的最优传输映射,因为这个映射具有鲜明的几何意义。

理论上,概率分布之间的变换可以在图像空间中完成,也可以在隐空间中完成。但是在实践中,隐空间的维数远低于图像空间,因此应该在隐空间中施行。因此,生成模型具有两个任务:一个是计算编码解码映射,另一个是概率分布变换。目前的模型,将这两个任务混同,因此难以分析。

  1. 我们的初步实验表明深度神经网络无法表达非连续映射,但是最优传输映射往往是有间断点的,因此目前的GAN模型需要进一步拓展。

  2. 对于降维的编解码映射,目前完备的基础理论尚未建立起来,很多方面比较含混原始,例如GAN的收敛性验证,收敛阶估计,误差分析和控制。

我们计划用更为精细的实验来详尽分析,更期待看到基础理论方面的长足发展。

小结


我们这里给出了最优传输映射观点下GAN模型的几何解释,指出了生成器和判别器之间的对抗竞争和交替训练可以被省略,而用显示的数学关系来取代。GAN模型主要任务分为编解码和概率测度变换,概率测度变换可以用透明的几何算法来解释并改进。初步试验结果显示了GAN模型构造的函数空间具有一定的局限性,无法表示经验数据的分布。

鸣谢


长期以来,丘成桐先生的团队坚持用几何的观点来阐述和改进深度学习模型。早在2017年2月初,笔者就撰文写了“看穿机器学习的黑箱”系列引起了很大的反响。许多学者和科研机构和团队成员联系,邀请我们前去给报告,我们将会在几个大会上详细解释我们的工作:全国计算机数学会议(10月20日,湘潭),2017中国计算机科学大会(10月26日,福州)第二届智能国际会议(10月27日,ICIS2017,上海)。我们和许多专家学者进行过讨论深入交流,特别是得到张首晟先生的鼓励,我们才总结成文,在此一并致以谢意!

最后,我们以张首晟先生的第一性原理来结束此文:“人类看到飞鸟遨游行空,便有了飞翔的梦想.但是早期的仿生却都失败了。理论物理指导我们理解了飞行的第一性原理,就是空气动力学,造出的飞机不像鸟却比鸟飞地更高更远。人工智能也是一样,人类的大脑给了我们智能的梦想,但不能简单地停留在神经元的仿生,而要理解智慧的第一性原理,才能有真正的大突破!”

References                                                 

1. Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua (2014). "Generative Adversarial Networks". arXiv:1406.2661 

2.  A. D. Alexandrov. “Convex polyhedra” Translated from the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze and A. B. Sossinsky. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.

3.  Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In International Conference on Machine Learning, pages 214–223, 2017.

4.   Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math., 44(4):375–417, 1991.

5.  Xianfeng Gu, Feng Luo, Jian Sun, and Tianqi Wu. A discrete uniformization theorem for polyhedral surfaces. Journal of Differential Geometry (JDG), 2017.

6.  Xianfeng Gu, Feng Luo, Jian Sun, and Shing-Tung Yau. Variational principles for minkowski type problems, discrete optimal transport, and discrete monge-ampere equations. Asian Journal of Mathematics (AJM), 20(2):383 C 398, 2016.

7.  Na Lei,Kehua Su,Li Cui,Shing-Tung Yau,David Xianfeng Gu, A Geometric View of Optimal Transportation and Generative Model, arXiv:1710.05488.



优质课程推荐:《人工智能的数学基础》

助教答疑摘抄(by 郑林峰 10月22日)


不要期望一门课可以学到所有的数学知识。

大家需要学的是机器学习(深度学习)的最小必要数学知识,例如概率、矩阵、凸优化......

花最短的时间,学习最必要的知识;在之后的使用过程中,再通过其他资料,不断地进行知识的完善和优化。


推荐大家上课前先将自己的知识放空,追随老师进行内容的学习。

程博士之前的课程,上过的学员都知道,老师知识层面的见解和讲述远超国内很多数学领域的研究者。听得我如痴如醉~




往期精彩文章

点击图片阅读

神经进化:一种不一样的深度学习——通过进化算法来探求神经网络的进化

登录查看更多
1

相关内容

专知会员服务
62+阅读 · 2020年3月4日
生成式对抗网络GAN异常检测
专知会员服务
117+阅读 · 2019年10月13日
GAN零基础入门:从伪造视频到生成假脸
新智元
13+阅读 · 2019年6月18日
万字综述之生成对抗网络(GAN)
PaperWeekly
43+阅读 · 2019年3月19日
GAN之父5篇文章细数GAN在人脸生成方向4年多进展
THU数据派
8+阅读 · 2019年1月22日
【学界】生成式对抗网络:从生成数据到创造智能
GAN生成式对抗网络
6+阅读 · 2018年6月14日
深度卷积对抗生成网络(DCGAN)实战
全球人工智能
14+阅读 · 2017年11月7日
虚构的对抗,GAN with the wind
全球人工智能
4+阅读 · 2017年10月22日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
【原理】GAN的数学原理
GAN生成式对抗网络
8+阅读 · 2017年8月30日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
4+阅读 · 2018年3月23日
Arxiv
5+阅读 · 2018年1月30日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关VIP内容
专知会员服务
62+阅读 · 2020年3月4日
生成式对抗网络GAN异常检测
专知会员服务
117+阅读 · 2019年10月13日
相关资讯
GAN零基础入门:从伪造视频到生成假脸
新智元
13+阅读 · 2019年6月18日
万字综述之生成对抗网络(GAN)
PaperWeekly
43+阅读 · 2019年3月19日
GAN之父5篇文章细数GAN在人脸生成方向4年多进展
THU数据派
8+阅读 · 2019年1月22日
【学界】生成式对抗网络:从生成数据到创造智能
GAN生成式对抗网络
6+阅读 · 2018年6月14日
深度卷积对抗生成网络(DCGAN)实战
全球人工智能
14+阅读 · 2017年11月7日
虚构的对抗,GAN with the wind
全球人工智能
4+阅读 · 2017年10月22日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
【原理】GAN的数学原理
GAN生成式对抗网络
8+阅读 · 2017年8月30日
Top
微信扫码咨询专知VIP会员