本文提出的复合弱监督学习技术方案明显优于单纯弱监督学习技术,可将AUC性能提升5%以上,并维持不错的效率。该研究成果不仅在评价数据的利用上对推荐结果有很好的提升,并且对司乘纠纷公平判责、地图POI挖掘等场景有比较好的借鉴意义。 参考文献 [1] Zhi-Hua Zhou. "A brief introduction to weakly supervised learning." National Science Review 5.1 (2018): 44-53. [2] Yu-Feng Li, Lan-Zhe Guo, and Zhi-Hua Zhou. "Towards Safe Weakly Supervised Learning." IEEE Transactions on Pattern Analysis and Machine Intelligence (2019). [3] Yu-Feng Li, Hai Wang, Tong Wei, Wei-Wei Tu. Towards Automated Semi-Supervised Learning. AAAI'19, Honolulu, HI, 2019, pp.4237-4244. [4] Dal Pozzolo, A., Caelen, O., Johnson, R. A., & Bontempi, G. "Calibrating probability with undersampling for unbalanced classification." IEEE Symposium Series on Computational Intelligence, 2015, 159-166. [5] Northcutt, C. G.; Wu, T.; and Chuang, I. L. Learning with confident examples: Rank pruning for robust classification with noisy labels. UAI 2017. [6] Hendrycks, D.; Mazeika, M.; Wilson, D.; and Gimpel, K. Using trusted data to train deep networks on labels corrupted by severe noise. NIPS 2018, 10456–10465. [7] Ren, M.; Zeng, W.; Yang, B.; and Urtasun, R. Learning to reweight examples for robust deep learning. ICML 2018, 4331–4340.