【技术分享】智能感知与计算研究中心NIPS 2017论文提出深度离散哈希算法,可用于图像检索

2017 年 11 月 3 日 机器学习研究会


点击上方 “机器学习研究会”可以订阅
摘要
 

转自:智能感知与计算研究中心

智能感知与计算研究中心李琦博士提出了一种深度离散哈希算法(discrete hashing algorithm),该算法认为学习到的二值编码应该也可以用于分类。实验结果表明该方法在基准数据集上的表现要好过目前最好的哈希方法,该成果已被 NIPS 2017接收,以下是相关成果介绍:



图 1 深度离散哈希编码示意图


由于网络上的图像和视频数据的快速增长,哈希算法(Hashing)在近几年间引起了极大的关注。由于其较低的计算成本和较高的存储效率,是图像搜索和视频搜索中最常使用的技术之一。一般来说,哈希算法可将高维数据编码为一组二进制代码,与此同时还能保持图像或视频的相似性。现有哈希算法可以大致分为两类:数据无关的方法和数据有关的方法。


近期有人提出了基于深度学习的哈希算法,它可以同时学习图像表示和哈希编码(hash coding),取得了比传统哈希算法更好的结果。「CNNH」[19] 是早期将深层神经网络与哈希编码融合的工作之一,该工作包括两个阶段来学习图像特征表示和哈希编码。CNNH 的一个缺点是通过学习得到的图像特征表示不能及时反馈给哈希编码。为了克服 CNNH 的这一缺陷,「Network In Network Hashing/NINH」[8] 提出了基于三元组损失函数来表示图像的相似性。研究表明,图像特征表示和哈希编码可以在一个框架内相互促进。「DSRH」算法 [24] 通过保留多标签图像间的相似语义信息来学习哈希函数。近年来还提出了其他基于排序的深度哈希算法 [17,21]。除了基于三元组排序方法外,还有一些基于成对标签的深度哈希算法 [9,25]。


我们所做工作总结如下。「1」我们方法的最后一层输出直接限制为二进制编码。学习到的二进制编码既能保持图像之间的相似关系,同时又能和标签信息保持一致。据我们所知,该方法是第一个在统一框架下同时使用成对标签信息和分类信息学习哈希编码的方法。「2」为了减少量化误差,我们在优化过程中保留了哈希编码的离散化这一特性。此外,我们还提出了一种交替优化方法,即使用坐标下降法优化目标函数。「3」大量的实验结果表明,我们的方法在图像检索问题上,取得了比现最好方法更好的结果,从而验证了我们方法的有效性。


图 1:DSDH-A、DSDH-B、DSDH-C 和 DSDH 在 CIFAR-10 上得到的结果:「a」Hamming 半径为 2 的精度曲线;「b」不同数目最佳返回图像的精度曲线(不确定);「c」具有 48 位哈希编码的精度-召回曲线。


原文链接:

https://mp.weixin.qq.com/s/JvXGl7eAm9tqxiIaHz_-vg

“完整内容”请点击【阅读原文】
↓↓↓
登录查看更多
12

相关内容

【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
59+阅读 · 2020年6月25日
专知会员服务
49+阅读 · 2020年6月14日
【SIGIR2020】用于冷启动推荐的内容感知神经哈希
专知会员服务
22+阅读 · 2020年6月2日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
专知会员服务
53+阅读 · 2019年12月22日
腾讯85页PPT“智能+”产业报告
物联网智库
52+阅读 · 2019年5月1日
基于二进制哈希编码快速学习的快速图像检索
炼数成金订阅号
8+阅读 · 2018年5月17日
无问西东,只问哈希
线性资本
3+阅读 · 2018年1月18日
最新|深度离散哈希算法,可用于图像检索!
全球人工智能
14+阅读 · 2017年12月15日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
11+阅读 · 2019年1月24日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
9+阅读 · 2018年5月7日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
Top
微信扫码咨询专知VIP会员