ECCV 2022 | 旷视提出半监督目标检测模型Dense Teacher,取得SOTA性能

2022 年 7 月 19 日 PaperWeekly


©作者 | 热灯lamp


这篇论文提出了一个新的半监督目标检测模型 Dense Teacher,推翻了当前流行的用 thresholding 生成 hard pseudo label 的范式,Teacher 模型仅提供 dense pseudo label,能够有效地提升单阶段目标检测器 FCOS 在半监督场景下的性能。COCO 10% labeled 情况下能达到 35.11 的 mAP,是当前半监督目标检测最好的效果。


论文标题:

Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection

收录会议:

ECCV 2022

论文链接:

https://arxiv.org/abs/2207.02541




动机



首先为什么当前的 Thresholding 生成 pseudo label 的方法不好? 如上图所示,当前流行的 thresholding 生成 pseudo label 主要包含了三个步骤:

  1. NMS:用一个 threshold 去除冗余的预测框;
  2. thresholding:用一个预定义的超参数 threshold 去过滤预测出来的框;
  3. label assign.



这三个地方都有对应的问题,前两个主要是对应的 threshold 很难选,如上图所示,(a)(b)分别展示了 score threshold 和 NMS threshold 对模型性能的影响,可以看到模型的效果随着 threshold 的波动而剧烈波动。

除此之外,这个最优的 threshold 在没有真正 label 的情况下几乎确定不了,大了不好,acc 上去了,但是 recall 很低,就会产生很多假阴性样本(False Negative);小了也不好,recall 上去了,acc 低了,就会产生很多假阳性( False Positive)样本。

而且不同的检测器用不同的 label assignment 方法, 有噪声的 pseudo label 会严重影响 label assignment。之前 label assignment 也是单阶段目标检测器的一个研究方向,诞生了很多工作,比如 ATSS,PAA。



方法


基于上面提到的一些 thresholding 产生的问题,所以作者提出了 Dense Teacher,摒弃传统的 thresholding 策略。具体的的方法很简单,teacher 对整个 feature map 经过 sigmoid 生成一个 dense label(这里有些迷惑,但作者也没有给更多具体实现细节还有些缺失,等放了代码再看),有了生成的 dense label,就可以用 Quality Focal Loss(Generalized Focal Loss)来监督 student 模型的输出了。

由于生成的 dense label 中间包含了很多 low score 的区域,作者提出用 FRS score 作为依据来过滤掉一些 low score 的区域。FRS score 定义如下:



其实就是某一个样本(point in FCOS)的分类最大概率值。然后 teacher 生成的 dense label 根据 FRS score 选取 top k% 来监督 student,其余不做约束。



结果


整个方法很简单,但是结果很有效。以 COCO-standard 结果为例(见下表), Dense Teacher 在各种情况下都达到了最佳的效果。



除此之外,也对 dense label 的一些作用给出了一些解释,主要是说 dense label 能够找到一些 hard negative region 来辅助训练,如下图所示,dense label 与 box label 相比,会找到一些 hard negative region 来帮助模型训练(但是我感觉这个解释有点 weak)。





总结

Dense Teacher 提出生成 dense pseudo label 来训练 student 模型,摒弃之前的 thresholding 方法,效果提升很明显。其实半监督目标检测里面的 thresholding 一直就有问题,所以设计了很多方法来选,但是检测和分类有很大的不同,检测是一个 box level 的 thresholding,合适的 threshold 非常难选,这篇文章给出了一个新的思路。但是作者只是很简单的说因为生成的是 dense label,所以选 dense object detector,也就是 FCOS 这类 anchor free 的方法。对于 two stage 的检测器,如 Faster RCNN 来说可能就不太适用。

BTW,CVPR 2022 有一篇 Unbiased Teacher V2,里面也使用了 FCOS 检测器,也复现了 Unbiased Teacher 的结果,但是二者结果相差还是很大的。举个栗子,COCO standard 10% 数据集下,unbiased teacher v2 复现的 FCOS unbiased teacher 只有 28.18,而 Dense Teacher 复现的有 unbiased teacher 能达到 31.52 mAP(cls),33.13 (cls + reg), 这个结果和 unbiased teacher v2 的结果(32.61)差不多了。


更多阅读



#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编




🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧


·

登录查看更多
0

相关内容

【CVPR2022】基于知识蒸馏的高效预训练
专知会员服务
31+阅读 · 2022年4月23日
【CVPR2022】基于密集学习的半监督目标检测
专知会员服务
19+阅读 · 2022年4月19日
【AAAI2022】锚框排序知识蒸馏的目标检测
专知会员服务
25+阅读 · 2022年2月10日
专知会员服务
13+阅读 · 2021年10月13日
专知会员服务
16+阅读 · 2021年5月23日
专知会员服务
32+阅读 · 2020年12月25日
【ECCV2020】OCRNet化解语义分割上下文信息缺失难题
专知会员服务
16+阅读 · 2020年8月24日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
目标检测-定位蒸馏:logit蒸馏与feature蒸馏之争
PaperWeekly
1+阅读 · 2022年4月24日
【CVPR2022】基于知识蒸馏的高效预训练
专知
4+阅读 · 2022年4月23日
半监督目标检测相关方法总结
极市平台
3+阅读 · 2022年2月2日
基于知识蒸馏的BERT模型压缩
大数据文摘
18+阅读 · 2019年10月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
7+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月9日
VIP会员
相关VIP内容
【CVPR2022】基于知识蒸馏的高效预训练
专知会员服务
31+阅读 · 2022年4月23日
【CVPR2022】基于密集学习的半监督目标检测
专知会员服务
19+阅读 · 2022年4月19日
【AAAI2022】锚框排序知识蒸馏的目标检测
专知会员服务
25+阅读 · 2022年2月10日
专知会员服务
13+阅读 · 2021年10月13日
专知会员服务
16+阅读 · 2021年5月23日
专知会员服务
32+阅读 · 2020年12月25日
【ECCV2020】OCRNet化解语义分割上下文信息缺失难题
专知会员服务
16+阅读 · 2020年8月24日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
7+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员