“每天AI资讯这么多!该看哪些?”推荐一份优质资料清单

2017 年 12 月 4 日 量子位 专注报道AI
原作 BAILOOL & meetshah1995
Root 编译自 GitHub
量子位 出品 | 公众号 QbitAI

人工智能最近火到炸裂,不看吧担心和时代脱节,看吧每天资讯多到想哭,信息过载心好累肿么办?

来<( ̄︶ ̄)↗跟着GitHub上的资深用户BAILOOL走,看看他们每日追踪的信息源,拿到第一手的学术进展和行业动态,不用再追着不同的网站看啦。

以下是原文

怎么避免“从入门到放弃”

不少童鞋发现人工智能很火,产生墙裂的学习兴趣(主要是工资高dei不dei),所以现在想上车学习,于是开始到处看“一文看懂”系列,或者开始修AI领域大牛的课程。

结果却发现,看完之后什么也没看懂。或者课程听起来很吃力,慢慢觉得自己智商跟不上,不像是这块料,就放弃了。

上车姿势不对啊童鞋们!知道大家刚开始控制不住寄几,疲于奔命地到处搜罗入门资料和课程,GitHub上的好心人就整理一份机器学习上车指南,包含精挑细选的一手资讯、经无数人验证的教程和高质量的信息源。

Step 1:刚迈脚上车,然后要干嘛

下了决心要转行AI,就等于一只脚上了车,不过一上来也别给自己整太大压力,上来就看大砖头的书或者报一门课程。

先来点简单的,好培养自己的兴趣和耐力,比如说,泡泡论坛。特别是如果你现在啥也不太懂,建议你每天打开电脑之后,别和妹纸聊微信了,别看农药解说的直播了。克制一下自己内心的及时行乐🐒

好好在Reddit这几个论坛上泡一会,泡它一个早上:

  • machine_learning
    (https://www.reddit.com/user/techrat_reddit/m/machine_learning/)

  • MachineLearning
    (https://www.reddit.com/r/MachineLearning/)

  • computervision
    (https://www.reddit.com/r/computervision/)

  • learnmachinelearning
    (https://www.reddit.com/r/learnmachinelearning/)

还有,Quora上的这几个板块也有很多料,:

  • Machine Learning
    (https://www.quora.com/pinned/Machine-Learning)

  • Computer Vision
    (https://www.quora.com/pinned/Computer-Vision)

  • Deep Learning
    (https://www.quora.com/pinned/Deep-Learning)

  • Reinforcement Learning
    (https://www.quora.com/pinned/Reinforcement-Learning)

Step 2:站久了该找个座啦

等到什么时候,你看论坛的内容吃不饱,觉得自己需要更高阶的知识充电,就可以转战去arXiv读论文了。

简单介绍一下(以下信息来自Wiki),arXiv呢,是个收集物理学、数学、计算机科学与生物学的论文预印本的网站。将预稿上传到arvix作为预收录,可以防止自己的idea在论文被收录前被别人剽窃。

因此arXiv是个可以证明论文原创性(上传时间戳)的文档收录网站。现今的很多科学家习惯先将其论文上传至arXiv.org,再提交予专业的学术期刊。

  • Computer Vision and Pattern Recognition
    (https://arxiv.org/list/cs.CV/recent)

  • Artificial Intelligence
    (https://arxiv.org/list/cs.AI/recent

  • Learning
    (https://arxiv.org/list/cs.LG/recent)

  • Neural and Evolutionary Computing(https://arxiv.org/list/cs.NE/recent)

不过arXiv有个缺点,就是自己搜索相应的论文很麻烦。

所以有个大神,Andrej,建立了一个论文自动推送网站arxiv-sanity.com,用户在上面建立一个自己的账号之后,往上丢几篇感兴趣的文章,这个网站就可以自动推送从arXiv上搜来且符合用户兴趣方向的相关论文。

Step 3:听听懂路的老司机报下站

如果读完论文之后,感觉一脸大写的懵✘,辣可以上ShortScience.org那转转。

这个网站是专门的论文讨论网站,上面有很多大牛点评同行的工作,或者读paper时做的笔记。大家看paper时也喜欢扎堆在ShortScience上发表自己的观点和看法。

特别适合刚上车的新手,如果自己读paper功力不太够,get不到重点,需要有人导读啥的,那么可以上这个网站去看看其他大牛对这篇论文的评论(有点儿像看完电影,总是习惯性上豆瓣看影评的赶脚)

Step 4:看看别人怎么开车

另外,还有个把paper和code整理到了一起的网站GitXiv.com,看名字就知道相当于GitHub和arXiv的合体。

在这个圈子里,已经形成了一股趋势,学术上一有最新进展,科学家都会把paper往arXiv上扔,然后没几天开发者们就把完成需求的开源代码抢发在GitHub上,大家执行力都超强的说。

不过,两个出处的链接没有个统一的地方可以关联在一起,不方便大家检索,也不方便大家横向比较和讨论,所以产生了这么个根据地GitXiv,供大家扎堆,还可以同行打分评论。

至于怎么上手自己开车,第5步之后就要靠大家去摸索啦,最后分享几个高质的信息源给大家。

最后:一手+高质+深度的信息feed

到现在这个阶段,可能一般的信息流已经满足不了你了。扔几个我们圈内人都会锁定的频道:

  • HackerNews
    (https://news.ycombinator.com/news)
    硅谷技术圈和投资圈都会关注的新闻网站,资讯不仅和AI有关,还会涉及到创业和信息安全,需要自己筛选。

  • DataTau(datatau.com)
    专门给数据科学家看的HackerNews。

  • AITopics
    (https://aitopics.org/search)
    可以自己设置订阅规则或者订阅源的资讯阅读器。

油管上有几个频道做得也不错,可以挑一个跟就好:

  • 3Blue1Brown
    (https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw)

  • Two Minute Papers
    (https://www.youtube.com/channel/UCbfYPyITQ-7l4upoX8nvctg)

  • Robert Miles
    (https://www.youtube.com/channel/UCLB7AzTwc6VFZrBsO2ucBMg)

  • Siraj Raval
    (https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A)

几家AI巨头的官方博客也挺值得跟,可以扔进订阅源里:

  • Google
    (https://research.googleblog.com/)

  • Facebook
    (https://research.fb.com/blog/)

  • Nvidia
    (https://blogs.nvidia.com/blog/category/deep-learning/)

  • Apple
    (https://machinelearning.apple.com/)

更新频率有点儿低,不过每次更新都是猛料的:

  • Google Scholar
    (https://scholar.google.com/)

  • ResearchGate
    (https://www.researchgate.net/)

  • Distill
    (https://distill.pub/)

推特上活跃的领域大牛必须关注一波(什么?你还没有推特?那你怎么活在AI圈子里!快,别墨迹,现在就去搞一个账号):Deep Learning Hub;Marshall Kirkpatrick;Lynn Cherny;Top-N;Top 10 AI;Text Data, Vis & Art。

这里就提这么几个人,等你到推特上之后关注完,推特会自己再给你推相关的大神的。

最后,有几个私人博客我觉得信息筛选的质量都符合我平时阅读的标准,大家挑一个喜欢的就好:

  • The Wild Week in AI
    (https://www.getrevue.co/profile/wildml)
    周更,上面时不时还会有初创团队招人信息放出来,比较适合找工作的孩纸。

  • inFERENCe(inference.vc)
    不定期更,博主是隔了三年没碰机器学习,然后重新捡回来相关的研究进展。这个博是他个人的一个学习机器学习的成长记录地。

  • The Morning Paper
    (https://blog.acolyer.org/)
    日更,这个博客是一个原本什么都不懂的VC开的,初心是想开始积累自己在ML领域的认知,资讯的选取更多是从投资者的角度出发。

  • Inside AI
    (https://inside.com/ai)
    Inside网站旗下的AI话题板块,专注于资讯的深度。现在大多数新闻都是为了流量,吸引读者的眼球,而很少考虑读者的收获,导致优质新闻的产出和占道越来越少,很难到达渴望深度内容的读者。所以,Inside AI希望经过他们的筛选,订阅用户能重新获取有价值的新闻资讯。

最后,附上原文链接:
https://github.com/BAILOOL/DoYouEvenLearn/blob/master/README.md

活动推荐

 点击图片阅读原文

即可报名和获取更多详情


联想全国高校AI精英挑战赛,面向全国征集优秀AI相关领域技术与应用。此次将在全国8大赛区、260所高校开启项目收集和沟通评判,最终入围总决赛的8支参赛队伍,将获得联想创投投资。

活动报名

旷视研究院深度解读COCO 2017物体检测夺冠算法


嘉宾:竞赛主力队员、论文一作,旷视研究院研究员彭超


时间:12月6日(周三)晚19:30-20:30


形式:线上直播+微信群互动


添加量子位小助手4:qbitbot4,备注“吃瓜社”,通过后即可入群参与活动

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态


登录查看更多
8

相关内容

arXiv(X依希腊文的χ发音,读音如英语的archive)是一个收集物理学、数学、计算机科学与生物学的论文预印本的网站,始于1991年8月14日。截至2008年10月,arXiv.org已收集超过50万篇预印本;至2014年底,藏量达到1百万篇。在2014年时,约以每月8000篇的速度增加。
打怪升级!2020机器学习工程师技术路线图
专知会员服务
98+阅读 · 2020年6月3日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
2019->2020必看的十篇「深度学习领域综述」论文
专知会员服务
270+阅读 · 2020年1月1日
专知会员服务
115+阅读 · 2019年12月24日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
推荐10个技术公众号
架构文摘
5+阅读 · 2019年4月24日
推荐10个优质公众号!
机器学习算法与Python学习
3+阅读 · 2018年8月1日
推荐一波优质公众号!
机器学习算法与Python学习
6+阅读 · 2018年5月29日
推荐10个优质科技类公众号!
机器学习算法与Python学习
10+阅读 · 2018年3月22日
资料 | 区域链相关资料汇总
机器学习算法与Python学习
6+阅读 · 2018年1月17日
聊天机器人资料汇总
我爱机器学习
29+阅读 · 2016年12月14日
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Knowledge Flow: Improve Upon Your Teachers
Arxiv
5+阅读 · 2019年4月11日
Arxiv
3+阅读 · 2019年3月29日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
打怪升级!2020机器学习工程师技术路线图
专知会员服务
98+阅读 · 2020年6月3日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
2019->2020必看的十篇「深度学习领域综述」论文
专知会员服务
270+阅读 · 2020年1月1日
专知会员服务
115+阅读 · 2019年12月24日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
推荐10个技术公众号
架构文摘
5+阅读 · 2019年4月24日
推荐10个优质公众号!
机器学习算法与Python学习
3+阅读 · 2018年8月1日
推荐一波优质公众号!
机器学习算法与Python学习
6+阅读 · 2018年5月29日
推荐10个优质科技类公众号!
机器学习算法与Python学习
10+阅读 · 2018年3月22日
资料 | 区域链相关资料汇总
机器学习算法与Python学习
6+阅读 · 2018年1月17日
聊天机器人资料汇总
我爱机器学习
29+阅读 · 2016年12月14日
相关论文
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Knowledge Flow: Improve Upon Your Teachers
Arxiv
5+阅读 · 2019年4月11日
Arxiv
3+阅读 · 2019年3月29日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
5+阅读 · 2015年9月14日
Top
微信扫码咨询专知VIP会员