摘要: 手语识别涉及计算机视觉、模式识别、人机交互等领域,具有重要的研究意义与应用价值。深度学习技术的蓬勃发展为更加精准、实时的手语识别带来了新的机遇。该文综述了近年来基于深度学习的手语识别技术,从孤立词与连续语句两个分支展开详细的算法阐述与分析。孤立词识别技术划分为基于卷积神经网络(CNN)、3维卷积神经网络(3D-CNN)和循环神经网络(RNN) 3种架构的方法;连续语句识别所用模型复杂度更高,通常需要辅助某种长时时序建模算法,按其主体结构分为双向长短时记忆网络模型、3维卷积网络模型和混合模型。归纳总结了目前国内外常用手语数据集,探讨了手语识别技术的研究挑战与发展趋势,高精度前提下的鲁棒性和实用化仍有待于推进。
http://jeit.ie.ac.cn/article/app/doi/10.11999/JEIT190416
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“DLSR” 可以获取《基于深度学习的手语识别综述》专知下载链接索引