机器学习(28)【降维】之sklearn中PCA库讲解与实战

2017 年 11 月 27 日 机器学习算法与Python学习

微信公众号

关键字全网搜索最新排名

【机器学习算法】:排名第一

【机器学习】:排名第一

【Python】:排名第三

【算法】:排名第四

前言

在(机器学习(27)【降维】之主成分分析(PCA)详解)中,对主成分分析的原理做了总结,本章总结如何使用scikit-learn工具来进行PCA降维。

sklearn中PCA介绍

在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中。最常用的PCA类就是sklearn.decomposition.PCA。


除了PCA类以外,最常用的PCA相关类还有KernelPCA类,它主要用于非线性数据的降维,需要用到核技巧。因此在使用的时候需要选择合适的核函数并对核函数的参数进行调参。另外一个常用的PCA相关类是IncrementalPCA类,它主要是为了解决单机内存限制的。有时候样本量可能是百万+,维度可能也是上千,直接去拟合数据可能会让内存爆掉, 此时我们可以用IncrementalPCA类来解决这个问题。IncrementalPCA先将数据分成多个batch,然后对每个batch依次递增调用partial_fit函数,这样一步步的得到最终的样本最优降维。


此外还有SparsePCA和MiniBatchSparsePCA。他们和上面讲到的PCA类的区别主要是使用了L1的正则化,这样可以将很多非主要成分的影响度降为0,这样在PCA降维的时候我们仅仅需要对那些相对比较主要的成分进行PCA降维,避免了一些噪声之类的因素对我们PCA降维的影响。SparsePCA和MiniBatchSparsePCA之间的区别则是MiniBatchSparsePCA通过使用一部分样本特征和给定的迭代次数来进行PCA降维,以解决在大样本时特征分解过慢的问题,当然,代价就是PCA降维的精确度可能会降低。使用SparsePCA和MiniBatchSparsePCA需要对L1正则化参数进行调参。


sklearnPCA参数介绍

下面主要基于sklearn.decomposition.PCA来讲解如何使用scikit-learn进行PCA降维。PCA类基本不需要调参,一般来说,我们只需要指定我们需要降维到的维度,或者我们希望降维后的主成分的方差和占原始维度所有特征方差和的比例阈值就可以了。


现在对sklearn.decomposition.PCA的主要参数做一个介绍:


1)n_components:这个参数可以帮我们指定希望PCA降维后的特征维度数目。最常用的做法是直接指定降维到的维度数目,此时n_components是一个大于等于1的整数当然,也可以指定主成分的方差和所占的最小比例阈值,让PCA类自己去根据样本特征方差来决定降维到的维度数,此时n_components是一个(0,1]之间的数。当然,还可以将参数设置为"mle", 此时PCA类会用MLE算法根据特征的方差分布情况自己去选择一定数量的主成分特征来降维。我们也可以用默认值,即不输入n_components,此时n_components=min(样本数,特征数)。


2)whiten :判断是否进行白化。所谓白化,就是对降维后的数据的每个特征进行归一化,让方差都为1.对于PCA降维本身来说,一般不需要白化。如果你PCA降维后有后续的数据处理动作,可以考虑白化。默认值是False,即不进行白化。


3)svd_solver:即指定奇异值分解SVD的方法,由于特征分解是奇异值分解SVD的一个特例,一般的PCA库都是基于SVD实现的。有4个可以选择的值:{‘auto’, ‘full’, ‘arpack’, ‘randomized’}。randomized一般适用于数据量大,数据维度多同时主成分数目比例又较低的PCA降维,它使用了一些加快SVD的随机算法。 full则是传统意义上的SVD,使用了scipy库对应的实现。arpack和randomized的适用场景类似,区别是randomized使用的是scikit-learn自己的SVD实现,而arpack直接使用了scipy库的sparse SVD实现。默认是auto,即PCA类会自己去在前面讲到的三种算法里面去权衡,选择一个合适的SVD算法来降维。一般来说,使用默认值就够了。


除了这些输入参数外,有两个PCA类的参数值得关注。第一个是explained_variance_,它代表降维后的各主成分的方差值。方差值越大,则说明越是重要的主成分。第二个是explained_variance_ratio_,它代表降维后的各主成分的方差值占总方差值的比例,这个比例越大,则越是重要的主成分。

PCA实例

为了方便的可视化让大家有一个直观的认识,我们这里使用了三维的数据来降维。


首先我们生成随机数据并可视化,代码如下:

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

%matplotlib inline

from sklearn.datasets.samples_generator import make_blobs

# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本3个特征,共4个簇

X, y = make_blobs(n_samples=10000, n_features=3, centers=[[3,3, 3], [0,0,0], [1,1,1], [2,2,2]], cluster_std=[0.2, 0.1, 0.2, 0.2], 

                  random_state =9)

fig = plt.figure()

ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=30, azim=20)

plt.scatter(X[:, 0], X[:, 1], X[:, 2],marker='o')



三维数据的分布图如下:


先不降维,只对数据进行投影,看看投影后的三个维度的方差分布,代码如下:

from sklearn.decomposition import PCA
pca = PCA(n_components=3)
pca.fit(X)print pca.explained_variance_ratio_print pca.explained_variance_

输出如下:

[ 0.98318212  0.00850037  0.00831751]
[ 3.78483785  0.03272285  0.03201892]

投影后三个特征维度的方差比例大约为98.3%:0.8%:0.8%。投影后第一个特征占了绝大多数的主成分比例。


现在我们来进行降维,从三维降到2维,代码如下:

pca = PCA(n_components=2)
pca.fit(X)print pca.explained_variance_ratio_print pca.explained_variance_

输出如下:

[ 0.98318212  0.00850037]
[ 3.78483785  0.03272285]

这个结果其实可以预料,因为上面三个投影后的特征维度的方差分别为:[ 3.78483785  0.03272285  0.03201892],投影到二维后选择的肯定是前两个特征,而抛弃第三个特征。


为了有个直观的认识,我们此时转化后的数据分布,代码如下:

X_new = pca.transform(X)
plt.scatter(X_new[:, 0], X_new[:, 1],marker='o')
plt.show()

输出的图如下:

可见降维后的数据依然可以很清楚的看到我们之前三维图中的4个簇。


现在看看不直接指定降维的维度,而指定降维后的主成分方差和比例。

pca = PCA(n_components=0.95)
pca.fit(X)print pca.explained_variance_ratio_print pca.explained_variance_print pca.n_components_

输出如下:

[ 0.98318212]
[ 3.78483785]
1

可见只有第一个投影特征被保留。这也很好理解,我们的第一个主成分占投影特征的方差比例高达98%。只选择这一个特征维度便可以满足95%的阈值。现在选择阈值99%看看,代码如下:

pca = PCA(n_components=0.99)
pca.fit(X)print pca.explained_variance_ratio_print pca.explained_variance_print pca.n_components_

此时的输出如下:

[ 0.98318212  0.00850037]
[ 3.78483785  0.03272285]
2

这个结果也很好理解,因为我们第一个主成分占了98.3%的方差比例,第二个主成分占了0.8%的方差比例,两者一起可以满足我们的阈值。


最后我们看看让MLE算法自己选择降维维度的效果,代码如下:

pca = PCA(n_components='mle')
pca.fit(X)print pca.explained_variance_ratio_print pca.explained_variance_print pca.n_components_

输出结果如下:

[ 0.98318212]
[ 3.78483785]
1

可见由于我们的数据的第一个投影特征的方差占比高达98.3%,MLE算法只保留了我们的第一个特征。


PCA算法总结

作为一个非监督学习的降维方法,它只需要特征值分解,就可以对数据进行压缩,去噪。因此在实际场景应用很广泛。为了克服PCA的一些缺点,出现了很多PCA的变种,比如为解决非线性降维的KPCA,还有解决内存限制的增量PCA方法Incremental PCA,以及解决稀疏数据降维的PCA方法Sparse PCA等。


优点

1)仅仅需要以方差衡量信息量,不受数据集以外的因素影响。

2)各主成分之间正交,可消除原始数据成分间的相互影响的因素。

3)计算方法简单,主要运算是特征值分解,易于实现。


缺点

1)主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。

2)方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。

欢迎分享给他人让更多的人受益

参考:

  1. 周志华《机器学习》

  2. Neural Networks and Deep Learning by By Michael Nielsen

  3. 博客园

    http://www.cnblogs.com/pinard/p/6489633.html

  4. 李航《统计学习方法》

  5. Deep Learning, book by Ian Goodfellow, Yoshua Bengio, and Aaron Courville


近期热文

值的收藏的干货 | 如何用Python实现常见机器学习算法

机器学习(27)【降维】之主成分分析(PCA)详解

干货 | 深度学习之CNN反向传播算法详解

推荐 | 一文读懂深度学习与机器学习的差异

机器学习(26)之K-Means实战与调优详解

干货 | 深度学习之卷积神经网络(CNN)的前向传播算法详解

干货 | 台大“一天搞懂深度学习”课程PPT(下载方式见文末!!)

机器学习(25)之K-Means聚类算法详解

加我微信:guodongwe1991,备注姓名-单位-研究方向(加入微信机器学习交流1群)

广告、商业合作

请加微信:guodongwe1991

喜欢,别忘关注~

帮助你在AI领域更好的发展,期待与你相遇!

登录查看更多
8

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
【2020新书】实战R语言4,323页pdf
专知会员服务
100+阅读 · 2020年7月1日
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
机器学习速查手册,135页pdf
专知会员服务
340+阅读 · 2020年3月15日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
356+阅读 · 2020年2月15日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
sklearn 与分类算法
人工智能头条
7+阅读 · 2019年3月12日
免费|机器学习算法Python实现
全球人工智能
5+阅读 · 2018年1月2日
机器学习(33)之局部线性嵌入(LLE)【降维】总结
机器学习算法与Python学习
7+阅读 · 2017年12月21日
机器学习(30)之线性判别分析(LDA)原理详解
机器学习算法与Python学习
11+阅读 · 2017年12月6日
机器学习(27)【降维】之主成分分析(PCA)详解
机器学习算法与Python学习
9+阅读 · 2017年11月22日
机器学习(26)之K-Means实战与调优详解
机器学习算法与Python学习
4+阅读 · 2017年11月19日
机器学习(23)之GBDT详解
机器学习算法与Python学习
12+阅读 · 2017年10月25日
支持向量机分类实战
全球人工智能
4+阅读 · 2017年10月18日
机器学习(16)之支持向量机原理(二)软间隔最大化
机器学习算法与Python学习
6+阅读 · 2017年9月8日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
【2020新书】实战R语言4,323页pdf
专知会员服务
100+阅读 · 2020年7月1日
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
机器学习速查手册,135页pdf
专知会员服务
340+阅读 · 2020年3月15日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
356+阅读 · 2020年2月15日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
相关资讯
sklearn 与分类算法
人工智能头条
7+阅读 · 2019年3月12日
免费|机器学习算法Python实现
全球人工智能
5+阅读 · 2018年1月2日
机器学习(33)之局部线性嵌入(LLE)【降维】总结
机器学习算法与Python学习
7+阅读 · 2017年12月21日
机器学习(30)之线性判别分析(LDA)原理详解
机器学习算法与Python学习
11+阅读 · 2017年12月6日
机器学习(27)【降维】之主成分分析(PCA)详解
机器学习算法与Python学习
9+阅读 · 2017年11月22日
机器学习(26)之K-Means实战与调优详解
机器学习算法与Python学习
4+阅读 · 2017年11月19日
机器学习(23)之GBDT详解
机器学习算法与Python学习
12+阅读 · 2017年10月25日
支持向量机分类实战
全球人工智能
4+阅读 · 2017年10月18日
机器学习(16)之支持向量机原理(二)软间隔最大化
机器学习算法与Python学习
6+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员