机器学习日报: 2017-05-17

2017 年 5 月 17 日 我爱机器学习 我爱机器学习

机器学习今日一览,请点开“阅读原文”查看相关链接。
1. 新智元(5)

  1. 【伪科学争议】上海交大“看脸定罪犯”作者:谷歌研究员给我扣了一顶大帽子

  2. 微软小冰被训练成诗人,人类或找到AI创造的通用方法 | 李笛演讲

  3. 打破深度学习检测视网膜病变世界纪录,IBM认知医疗总监谢国彤北大AI课精彩分享

  4. 【荐书】科大讯飞刘庆峰:人工智能产业化的未来地图

  5. 【AI Top 10】Google I/O来袭:三大主题AI与ML等;百度12亿剥离游戏业务聚焦AI;亮亮视野获蓝驰千万美元融资

2. 机器之心(5)

  1. 业界 | Google I/O 2017:值得期待的机器学习内容有哪些?

  2. 学界 | 让好奇心驱动人工智能:UC Berkeley提出自监督预测算法

  3. SIA重磅报告解读半导体行业前景:涵盖分布式、认知和生物计算等

  4. 开源 | 谷歌发布 Coarse Discourse:迄今为止最大的在线讨论标注数据集

  5. 学界 | OpenAI推出机器人新系统:机器可通过VR演示自主学习新任务

3. 大数据文摘(3)

  1. 谷歌年度狂欢2017I/O大会6大亮点曝光,机器学习将是主角

  2. Elon Musk揭OpenAI研究新突破, 可在VR中自我学习的机器人(附论文)

  3. AI应从神经科学中借鉴想法和思路

4. CSDN大数据(1)

  1. 图像分类 | 深度学习PK传统机器学习

5. VALSE(1)

  1. 【17-10期VALSE Webinar活动】

6. 程序媛的日常(1)

  1. 线下活动 | 全球最佳女性科技雇主 ThoughtWorks 的秘密

7. 人工智能学家(3)

  1. Salesforce 用机器学习来自动总结文本,AI+SaaS 是未来吗?

  2. 清华大学团队类脑芯片研究取得大突破

  3. 刘知青:AlphaGo存在致命弱点 期待柯洁能找出

8. PaperWeekly(1)

  1. Neural Representation Learning in NLP | 直播预告·PhD Talk #07

9. THU数据派(1)

  1. 【独家】量子计算的发展及核心问题(附论文、课件下载)

10. 机器学习研究会(5)

  1. 【学习】基于生物特征的人口统计学分析综述

  2. 打破深度学习检测视网膜病变世界纪录,IBM认知医疗总监谢国彤北大AI课精彩分享

  3. 【学习】视觉SLAM资源集锦

  4. 隐马尔科夫模型-基本模型与三个基本问题

  5. 2017年5月历史文章汇总

11. AI前线(1)

  1. 阿里巴巴为什么要选择星际争霸作为AI算法研究环境?

12. 将门创投(1)

  1. 深度 | 拆开阿里小蜜的内核,看智能人机交互的实现逻辑

13. 大数据(1)

  1. 点赞撬动的商业帝国丨你的一个赞值多少钱

14. 大数据杂谈(1)

  1. 精准出击,一篇文章教你如何在企业应用中使用Spark GraphX处理图数据

15. 全球人工智能(5)

  1. 最新|Openai发布一看就能学会的“一次模仿学习模型”简直逆天啦!

  2. 干货|在神经网络中weight decay起到的做用是什么?momentum呢?normalization呢?

  3. 资源|关于网络表示学习(NRL)/网络嵌入(NE)的必读文章

  4. 重磅|振奋人心!图灵奖得主John Hopcroft教授加入北大!

  5. 技术|可视化:如何打造加权透视散点?

16. 数学人生(1)

  1. 聚类算法(二)

17. 极市平台(1)

  1. 微软新研究:深度特征流用于视频的识别(论文+代码)

18. 神机喵算(1)

  1. TensorKart:基于TensorFlow自动驾驶的《马里奥赛车》

19. 阅面科技(1)

  1. 技术干货:Monocular slam 的理论基础(1)

20. 爱可可 – 爱生活(52)

  1. 《“弱监督”下的神经排序模型》via:@雷锋网 http://t.cn/RaTYQ8B //@爱可可-爱生活: 【弱监督神经网络排序模型】《Beating the Teacher: Neural Ranking Models with Weak Supervision》by Mostafa Dehghani http://t.cn/RaAWNQeRT @爱可可-爱生活:《Neural Ranking Models with Weak Supervision》M Dehghani, H Zamani, A Severyn, J Kamps, W. B Croft [University of Amsterdam & University of MassachuseŠs Amherst & Google Research] (2017) http://t.cn/RXsK2BG

  2. 《为什么专家喜欢用游戏训练AI ?答案在这里!》via:AI世代 http://t.cn/RaHNpH8RT @爱可可-爱生活:【AI研究人员为何对视频游戏情有独钟】《Why AI researchers like video games | The Economist》 http://t.cn/RajD1bJ pdf:http://t.cn/RajD1bx

  3. 《OpenAI发布人工智能新算法,糅合VR技术“教”会机器人自主学习》via:DeepTech深科技 http://t.cn/RaHNXD7RT @爱可可-爱生活:【自主学习机器人】“Robots that Learn | OpenAI” http://t.cn/RaYrEOm

  4. 《爱可可老师24小时热门分享(2017.05.17)》 http://t.cn/RaHC3qc

  5. 《GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence》by JiaWang Bian http://t.cn/R6s5fJa GitHub:http://t.cn/RaHCC2O

  6. PyTorch Implementation by Stéphane Guillitte GitHub:http://t.cn/RaHXyqYRT @爱可可-爱生活:《Learning to Generate Reviews and Discovering Sentiment》A Radford, R Jozefowicz, I Sutskever [OpenAI] (2017) http://t.cn/R6BuhJX GitHub:http://t.cn/R6BuhJa

  7. 【(TensorFlow)深度对话模型】’Conversation models in TensorFlow – Have a chat with a deep neural network.’ by Brandon McKinzie GitHub: http://t.cn/RaHVQ14 Demo:http://t.cn/RaHVQ1b

  8. 【机器学习101】《Machine Learning 101》by Peter Roelants http://t.cn/RaHck5y pdf:http://t.cn/RaHck5U

  9. #bilibili#搬运版fast.ai课程视频(中文字幕): http://weibo.com/1402400261/F0K7DC9MSRT @爱可可-爱生活:【实战体验:如何只看两节fast.ai深度学习课程花一天时间杀入Kaggle入侵物种检测竞赛前50%】《How I built a deep learning application to detect invasive species in just 1 day (and for $12.60)》by Kevin Dewalt http://t.cn/RaTRbsd GitHub:http://t.cn/RaTRnpG pdf:http://t.cn/RaTRnpb

  10. 《让好奇心驱动人工智能:UC Berkeley提出自监督预测算法》via:@机器之心synced http://t.cn/RaTF8VB //@爱可可-爱生活: arXiv:《Curiosity-driven Exploration by Self-supervised Prediction》(2017) http://t.cn/RaTvx4ERT @爱可可-爱生活:【自监督预测好奇驱动探索】《Curiosity-driven Exploration by Self-supervised Prediction》D Pathak, P Agrawal, A A. Efros, T Darrell [UC Berkeley] (2017) http://t.cn/Ral0wyb GitHub:http://t.cn/Ral0wy4 http://t.cn/Ral0zXI

  11. 《谷歌发布 Coarse Discourse:迄今为止最大的在线讨论标注数据集》via:@机器之心synced http://t.cn/RaTFWFCRT @爱可可-爱生活:【取自Reddit万条帖子的在线讨论文本数据集】“Coarse Discourse: A Dataset for Understanding Online Discussions” by Google GitHub:http://t.cn/RaT44Oz ref: http://t.cn/RaTnnEh paper:《Characterizing Online Discussion Using Coarse Discourse Sequences》http://t.cn/RaTnnEz

  12. 【Pix2Pix(创作)指南】《Pix2Pix》 http://t.cn/RaTmTBp pdf:http://t.cn/RaTmTBW

  13. 【取自Reddit万条帖子的在线讨论文本数据集】“Coarse Discourse: A Dataset for Understanding Online Discussions” by Google GitHub:http://t.cn/RaT44Oz ref: http://t.cn/RaTnnEh paper:《Characterizing Online Discussion Using Coarse Discourse Sequences》http://t.cn/RaTnnEz

  14. 【考察新想法是否曾被人提出过的最省劲办法[挤眼]】”How do I know if someone has tried my idea before?” via:Reddit

  15. 【Google官方教程:TensorFlow+Android手机上的花朵图片识别应用开发与优化】《TensorFlow for Poets 2: Optimize for Mobile》 http://t.cn/RaTEW7j

  16. TensorFlow Implementation by Kyubyong Park GitHub:http://t.cn/RaTEzfuRT @爱可可-爱生活:《Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model》Y Wang, R Skerry-Ryan, D Stanton, Y Wu, R J. Weiss, N Jaitly, Z Yang, Y Xiao, Z Chen, S Bengio, Q Le, Y Agiomyrgiannakis… [Google] (2017) http://t.cn/R6CQhce Home:http://t.cn/R6CVsft GitHub:http://t.cn/R6pJxxA

  17. 【实战体验:如何只看两节fast.ai深度学习课程花一天时间杀入Kaggle入侵物种检测竞赛前50%】《How I built a deep learning application to detect invasive species in just 1 day (and for $12.60)》by Kevin Dewalt http://t.cn/RaTRbsd GitHub:http://t.cn/RaTRnpG pdf:http://t.cn/RaTRnpb

  18. 【(TensorFlow)CIFAR-10数据集图像分类实例】“CIFAR-10 dataset Image Classification with TensorFlow” by Rajiv Kumar GitHub:http://t.cn/RaTQHVv

  19. 【基于神经网络的共享单车使用人数预测实例】“neural network to predict daily bike rental ridership” by Rajiv Kumar GitHub:http://t.cn/RaTQSiG

  20. 【(Python)特征自动抽取工具包】’pliers – Automated feature extraction in Python’ by Tal Yarkoni GitHub: http://t.cn/RaTHDgJ

  21. “An attempt to replicate the neural programmer work using techniques for learning probability distributions in probabilistic programming languages” by Vijay Saraswat GitHub:http://t.cn/RaTHT6HRT @爱可可-爱生活:《Learning a Natural Language Interface with Neural Programmer》A Neelakantan, Q V. Le, M Abadi, A McCallum, D Amodei [University of Massachusetts Amherst & Google Brain & OpenAI] (2016) http://t.cn/RfQkdeZ GitHub:http://t.cn/RfQkdez

  22. 【视觉SLAM资源集锦】’awesome-visual-slam – The list of vision-based SLAM / Visual Odometry open source, blogs, and papers’ by darrenl GitHub: http://t.cn/RaTH6H4

  23. arXiv:《Snapshot Ensembles: Train 1, get M for free》(2017) http://t.cn/RaTH4BQ GitHub(Keras Implementation):http://t.cn/RaTH4BHRT @爱可可-爱生活:《Snapshot Ensembles: Train 1, Get M for Free》G Huang, Y Li, G Pleiss, Z Liu, J E. Hopcroft, K Q. Weinberger [Cornell University & Tsinghua University] (2016) http://t.cn/RfhGWQu GitHub(coming…):http://t.cn/RfhGWQm

  24. GitHub:http://t.cn/RXunLhWRT @爱可可-爱生活:《DeMoN: Depth and Motion Network for Learning Monocular Stereo》B Ummenhofer, H Zhou, J Uhrig, N Mayer, E Ilg, A Dosovitskiy, T Brox [University of Freiburg] (2016) http://t.cn/RI2URt0 Home:http://t.cn/RI2UYdj http://t.cn/RI2URto .

  25. 恭喜@去吧—-皮卡丘 等5名用户获得【《视觉SLAM十四讲:从理论到实践》】。微博官方唯一抽奖工具@微博抽奖平台 对本次抽奖进行监督,结果公正有效。公证链接:http://t.cn/RaTN2kYRT @爱可可-爱生活:#转发赠书# 携手 @博文视点Broadview 送出 5 本《视觉SLAM十四讲:从理论到实践》by 高翔,张涛 截止2017.5.17 12:00,转发即可参与 国内作者原创SLAM技术书,从基础理论到代码实现 ref:http://weibo.com/1402400261/EyECvv8eN 图书详情:http://t.cn/RaIc92z

  26. 【基于gpuArray的轻量MATLAB深度学习工具箱】’A lightweight MATLAB deeplearning toolbox,based on gpuArray.’ by QuantumLiu GitHub: http://t.cn/RaThkrc

  27. Keras Implimentation by neka-nat GitHub:http://t.cn/RaThgb8RT @爱可可-爱生活:【论文:值迭代网络(VI networks)】《Value Iteration Networks》A Tamar, S Levine, P Abbeel [University of California, Berkeley] (2016) http://t.cn/RG5bkmd

  28. 今日开奖~RT @爱可可-爱生活:#转发赠书# 携手 @博文视点Broadview 送出 5 本《视觉SLAM十四讲:从理论到实践》by 高翔,张涛 截止2017.5.17 12:00,转发即可参与 国内作者原创SLAM技术书,从基础理论到代码实现 ref:http://weibo.com/1402400261/EyECvv8eN 图书详情:http://t.cn/RaIc92z

  29. 【深度学习Twitter仇恨言论检测】’Deep Learning models to detect hate speech in tweets’ by Pinkesh Badjatiya GitHub: http://t.cn/RaThH5P

  30. 【将Caffe2一步集成到iOS项目】’Caffe2Kit – Caffe2 for iOS. A simple one step integration’ by Robert Biehl GitHub: http://t.cn/RaThocF

  31. 【TensorFlow实例与教程】’Tensorflow Programs and Tutorials – Implementations of CNNs, RNNs, GANs, etc’ by Adit Deshpande GitHub: http://t.cn/RaThfRt

  32. 【神经网络Learning to rank:Pairwise(RankNet)/ListWise(ListNet)】’Learning to rank with neuralnet – RankNet and ListNet’ by Shintaro Shiba GitHub: http://t.cn/RaTh42Q

  33. ‘Implmentiaion of ABCNN(Attention-Based Convolutional Neural Network) on Tensorflow’ by Taeuk Kim GitHub: http://t.cn/RaThA2e ref:《ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs》 (2016) http://t.cn/RaThA2g

  34. 【递归双边过滤(RecursiveBF)轻量C++库】’RecursiveBF – A lightweight C++ library for recursive bilateral filtering.’ by Ming GitHub: http://t.cn/RaWegS7 ref:《Recursive bilateral filtering》Q Yang (2012) http://t.cn/RaTPFat

  35. 2.5M artwork urls, 393K attribute labels, 74K short image descriptions/captionsRT @爱可可-爱生活:《BAM! The Behance Artistic Media Dataset for Recognition Beyond Photography》M J. Wilber, C Fang, H Jin, A Hertzmann, J Collomosse, S Belongie [Adobe Research & Cornell Tech] (2017) http://t.cn/RaqbPWB Home:http://t.cn/RaqbPWr

  36. ref:《DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling》X Han, C Gao, Y Yu [University of Hong Kong] (2017) http://t.cn/RaTPl7KRT @爱可可-爱生活:【深度学习涂鸦3D人脸生成】《Create a 3D Caricature in Minutes with Deep Learning》 http://t.cn/RaTPCHG http://t.cn/RaTPCPg

  37. 【深度学习涂鸦3D人脸生成】《Create a 3D Caricature in Minutes with Deep Learning》 http://t.cn/RaTPCHG http://t.cn/RaTPCPg

  38. 《Data Science Bowl 2017, Predicting Lung Cancer: Solution Write-up, Team Deep Breath | No Free Hunch》 http://t.cn/RaTPGCi

  39. 【信用卡违约申请预测】《Predicting defaulting on credit card applications》by Natalino Busa GitHub:http://t.cn/RaTPUR9

  40. 【Kaggle竞赛:Instacart购物记录分析/重复购买预测】《Instacart Market Basket Analysis – Which products will an Instacart consumer purchase again? | Kaggle》 http://t.cn/RaTPwyx

  41. 【Amazon Machine Learning超参优化】《Performing Hyperparameter Optimization with Amazon Machine Learning》by Alexandra L Johnson GitHub:http://t.cn/RaTvkdC

  42. 【自主学习机器人】“Robots that Learn | OpenAI” http://t.cn/RaYrEOm

  43. 【深度学习市场分析报告】《Deep Learning Market Size & Growth | Industry Research Report, 2025》by Grand View Research http://t.cn/RaTv8mB

  44. 《Emotion in Reinforcement Learning Agents and Robots: A Survey》T M. Moerland, J Broekens, C M. Jonker [Delft University of Technology] (2017) http://t.cn/RaTvpkA

  45. 《Mosquito Detection with Neural Networks: The Buzz of Deep Learning》I Kiskin, B P Orozco, T Windebank, D Zilli, M Sinka, K Willis, S Roberts [University of Oxford] (2017) http://t.cn/RaTvad1 GitHub:http://t.cn/RaTvad3

  46. arXiv:《Curiosity-driven Exploration by Self-supervised Prediction》(2017) http://t.cn/RaTvx4ERT @爱可可-爱生活:【自监督预测好奇驱动探索】《Curiosity-driven Exploration by Self-supervised Prediction》D Pathak, P Agrawal, A A. Efros, T Darrell [UC Berkeley] (2017) http://t.cn/Ral0wyb GitHub:http://t.cn/Ral0wy4 http://t.cn/Ral0zXI

  47. 《Detecting Statistical Interactions from Neural Network Weights》M Tsang, D Cheng, Y Liu [University of Southern California] (2017) http://t.cn/RaTvf2G

  48. 《Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network》X Jia, X Xu, B Cai, K Guo [South China University of Technology] (2017) http://t.cn/RaTv57b

  49. 《Dykstra’s Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions》R J. Tibshirani [CMU] (2017) http://t.cn/RaTv4fZ

  50. 《Probabilistic Matrix Factorization for Automated Machine Learning》N Fusi, H M Elibol [Microsoft Research] (2017) http://t.cn/RaTvyq1 GitHub:http://t.cn/RaTvyq3

  51. 《Comparison of Maximum Likelihood and GAN-based training of Real NVPs》I Danihelka, B Lakshminarayanan, B Uria, D Wierstra, P Dayan [Google DeepMind & UCL] (2017) http://t.cn/RaTvwQq

  52. 《今日学术视野(2017.05.17)》 http://t.cn/RaTvwci


登录查看更多
0

相关内容

CN:Computer Networks。 Explanation:计算机网络。 Publisher:Elsevier。 SIT: http://dblp.uni-trier.de/db/journals/cn/
【经典书】机器学习:贝叶斯和优化方法,1075页pdf
专知会员服务
404+阅读 · 2020年6月8日
【中国人民大学】机器学习的隐私保护研究综述
专知会员服务
131+阅读 · 2020年3月25日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
【斯坦福&Google】面向机器人的机器学习,63页PPT
专知会员服务
24+阅读 · 2019年11月19日
CMU博士论文:可微优化机器学习建模
专知会员服务
58+阅读 · 2019年10月26日
斯坦福&谷歌Jeff Dean最新Nature论文:医疗深度学习技术指南
【AI日报】2019-05-29 星期三
好东西传送门
3+阅读 · 2019年5月29日
【AI日报】2019-03-18 星期一
好东西传送门
3+阅读 · 2019年3月18日
【机器学习】机器学习:未来十年研究热点
产业智能官
16+阅读 · 2018年11月4日
机器学习不能做什么?
引力空间站
5+阅读 · 2018年3月28日
NSR专题|机器学习(特邀编辑:周志华)
知社学术圈
7+阅读 · 2018年3月2日
机器学习知识体系
互联网架构师
5+阅读 · 2018年1月9日
【机器学习】机器学习和深度学习概念入门
产业智能官
11+阅读 · 2018年1月3日
技术人必备的碎片化时间学习工具
数据猿
7+阅读 · 2017年11月24日
Arxiv
5+阅读 · 2019年6月5日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Knowledge Representation Learning: A Quantitative Review
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
【AI日报】2019-05-29 星期三
好东西传送门
3+阅读 · 2019年5月29日
【AI日报】2019-03-18 星期一
好东西传送门
3+阅读 · 2019年3月18日
【机器学习】机器学习:未来十年研究热点
产业智能官
16+阅读 · 2018年11月4日
机器学习不能做什么?
引力空间站
5+阅读 · 2018年3月28日
NSR专题|机器学习(特邀编辑:周志华)
知社学术圈
7+阅读 · 2018年3月2日
机器学习知识体系
互联网架构师
5+阅读 · 2018年1月9日
【机器学习】机器学习和深度学习概念入门
产业智能官
11+阅读 · 2018年1月3日
技术人必备的碎片化时间学习工具
数据猿
7+阅读 · 2017年11月24日
Top
微信扫码咨询专知VIP会员