【VLDB2019】虚假新闻(Fake News)检测全面综述教程,156页PPT带你进入这一领域

2019 年 9 月 3 日 专知

【导读】VLDB 2019(Very Large Data Bases)是三大国际顶尖数据库会议之一(其余二者为SIGMOD和ICDE),根据大会官方公布,今年VLDB共接收了128篇Research Paper、22篇IndustryPaper和48个Demo。VLDB 2019已经于2019.8.26-2019.8.30在洛杉矶召开。专知推荐在VLDB 2019上的一个虚假新闻(Fake News)检测的全面综述教程,本教程是数据库和社交网络领域的三位资深教授讲授,提供了最新关于Fake News相关技术的全景视图,包括检测,传播,缓解和假新闻的干预,教程涵盖了数据集成、真相发现与融合、概率数据库、知识图和假新闻视角下的众包等领域的研究,也是一个新兴研究方向。

01

内容简介


虚假新闻(Fake News)是对全球民主的一大威胁,导致人们对政府、新闻和社会的信任度下降。社交媒体和社交网络的大众普及,导致了假新闻的蔓延,阴谋论、虚假信息和极端观点在这些地方盛行。假新闻的发现与治理是当今时代的基本问题之一,受到了广泛的关注。尽管snopes、politifact等事实核查网站,以及谷歌、Facebook和Twitter等大公司,已经采取了初步措施来处理假新闻,但还有很多工作要做。作为一个跨学科的话题,从机器学习、数据库、新闻、政治学到其他很多领域,人们都在研究假新闻的各个方面。

 

本教程的目标有两个方面。首先,我们希望使数据库社区熟悉其他社区在打击假新闻方面所作的努力。我们提供有关各方面研究的最新技术的全景视图,包括检测,传播,缓解和假新闻的干预


接下来,我们将简要而直观地总结数据库社区之前的研究,并讨论如何使用这些研究来抵消假新闻。


本教程涵盖了数据集成、真相发现与融合、概率数据库、知识图和假新闻视角下的众包等领域的研究。只有利用数据库和其他研究社区之间的协作关系,才能建立有效的工具来处理假新闻。我们希望我们的教程能够推动这种思想的综合和新思想的创造。


02

讲者


Laks V.S. Lakshmanan是英属哥伦比亚大学计算机科学系的教授。他是BC高级系统研究所的研究员,并于2016年11月被任命为ACM杰出科学家。他的研究兴趣涉及数据库系统和相关领域的广泛主题,包括:关系数据库和面向对象数据库, 高级数据模型新颖的应用程序,OLAP和数据仓库、数据挖掘、数据集成、半结构化数据和XML,社交网络和社交媒体,推荐系统和个性化。

 

Michael Simpson是英属哥伦比亚大学计算机科学系的博士后研究员。他在维多利亚大学获得博士学位。他的研究兴趣包括数据挖掘,社会网络分析,以及图形问题的可扩展算法的设计。

 

Saravanan(Sara)Thirumuruganathan是HBKU QCRI数据分析小组的科学家。他在德克萨斯大学阿灵顿分校获得博士学位。他对数据集成/清洗和用于数据管理的机器学习非常感兴趣。Saravanan的作品被选为VLDB 2018/2012年度最佳论文,并获得了SIGMOD 2018年度研究重点奖。

03

相关文献

Fake News Primer

References

  • Lui Guo and Chris Vargo, “Fake News” and Emerging Online Media Ecosystem: An Integrated Intermedia Agenda-Setting Analysis of the 2016 U.S. Presidential Election. Communications Research, June 2018.

  • Wu, Agrawal, Li, Yang, and Yu. Computational Fact-Checking through Query Perturbations. ACM TODS 2017.

Propagation of Fake News

References

  • David Kempe, Jon Kleinberg, and Eva Tardos. Maximizing the spread of influence through a social network. KDD 2003.

  • Sejeong Kwon, Meeyoung Cha, Kyomin Jung, Wei Chen, and Yajun Wang. Prominent features of rumor propagation in online social media. ICDM 2013.

  • Soroush Vosoughi, Deb Roy and Sinan Aral. The spread of true and false news online. Science 2018.

  • Xinyi Zhou, Reza Zafarani. Fake News: A Survey of Research, Detection Methods, and Opportunities. arXiv preprint. 2018.

Detection of Fake News

References (Data Integration, Truth Discovery & Fusion)

  • Jing Gao, Qi Li, Bo Zhao, Wei Fan, and Jiawei Han. Truth discovery and crowdsourcing aggregation: A unified perspective. PVLDB 2015.

  • Yannis Katsis, Yannis Papakonstantinou. View-based data integration. Encyclopedia of Database Systems. 2009.

  • Theodoros Rekatsinas, Manas Joglekar, Hector Garcia-Molina, Aditya Parameswaran, and Christopher Ré. Slimfast: Guaranteed results for data fusion and source reliability. SIGMOD 2017.

  • Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Kevin Murphy, Shaohua Sun, and Wei Zhang. From data fusion to knowledge fusion. PVLDB 2014.

  • Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. Integrating conflicting data: the role of source dependence. PVLDB 2009.

References (ML-based Detection)

  • Subhabrata Mukherjee and Gerhard Weikum. Leveraging Joint Interactions for Credibility Analysis in News Communities. CIKM 2015.

  • SVN Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. JMLR 2010.

  • Xinyi Zhou, Reza Zafarani, Kai Shu, and Huan Liu. Fake news: Fundamental theories, detection strategies and challenges. WSDM 2019.

  • Xinyi Zhou, Reza Zafarani. Fake News: A Survey of Research, Detection Methods, and Opportunities. arXiv preprint. 2018.

  • Ke Wu, Song Yang, and Kenny Q. Zhu. False rumors detection on sina weibo by propagation structures." ICDE 2015.

References (Knowledge Graph-based Approaches )

  • Akrami, Farahnaz, et al. "Re-evaluating Embedding-Based Knowledge Graph Completion Methods." Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM, 2018.

  • Bordes, Antoine, et al. "Translating embeddings for modeling multi-relational data." Advances in neural information processing systems. 2013.

  • Chang, Lijun, et al. "Optimal enumeration: Efficient top-k tree matching." Proceedings of the VLDB Endowment 8.5 (2015): 533-544.

  • Cheng, Jiefeng, Xianggang Zeng, and Jeffrey Xu Yu. "Top-k graph pattern matching over large graphs." 2013 IEEE 29th International Conference on Data Engineering (ICDE). IEEE, 2013.

  • Ciampaglia, Giovanni Luca, et al. "Computational fact checking from knowledge networks." PloS one 10.6 (2015): e0128193

  • Hamilton, Will, et al. "Embedding logical queries on knowledge graphs." Advances in Neural Information Processing Systems. 2018.

  • Jeh, Glen and Jennifer Widom. SimRank: a measure of structural-context similarity. KDD (2002).

  • Kazemi, Seyed Mehran, and David Poole. "Simple embedding for link prediction in knowledge graphs." Advances in Neural Information Processing Systems. 2018.

  • Lao, Ni, and William W. Cohen. "Relational retrieval using a combination of path-constrained random walks." Machine learning 81.1 (2010): 53-67.

  • Lin, Peng, et al. "Discovering graph patterns for fact checking in knowledge graphs." International Conference on Database Systems for Advanced Applications. Springer, Cham, 2018.

  • Lin, Yankai, et al. "Learning entity and relation embeddings for knowledge graph completion." Twenty-ninth AAAI conference on artificial intelligence. 2015.

  • Lü, Linyuan, Ci-Hang Jin, and Tao Zhou. "Similarity index based on local paths for link prediction of complex networks." Physical Review E 80.4 (2009): 046122.

  • Morales, Camilo, et al. "MateTee: A semantic similarity metric based on translation embeddings for knowledge graphs." International Conference on Web Engineering. Springer, Cham, 2017.

  • B. Shi and T. Weninger. Discriminative predicate path mining for fact checking in knowledge graphs. Knowledge-Based Sys., 104:123–133, 2016.

  • Shi, Baoxu, and Tim Weninger. "ProjE: Embedding projection for knowledge graph completion." Thirty-First AAAI Conference on Artificial Intelligence. 2017.

  • P. Shiralkar, A. Flammini, F. Menczer, and G. L. Ciampaglia. Finding streams in knowledge graphs to support fact checking. In 2017 IEEE ICDM 2017, pp 859–864, 2017.

  • Wang, Zhen, et al. "Knowledge graph embedding by translating on hyperplanes." Twenty-Eighth AAAI conference on artificial intelligence. 2014.

  • Xu, Zhongqi, Cunlai Pu, and Jian Yang. "Link prediction based on path entropy." Physica A: Statistical Mechanics and its Applications 456 (2016): 294-301.

  • Yang, Bishan, et al. "Embedding entities and relations for learning and inference in knowledge bases." arXiv preprint arXiv:1412.6575 (2014).

  • Yang, Shengqi, et al. "Schemaless and structureless graph querying." Proceedings of the VLDB Endowment 7.7 (2014): 565-576.

  • Yang, Shengqi, et al. "Fast top-k search in knowledge graphs." 2016 IEEE 32nd international conference on data engineering (ICDE). IEEE, 2016.

Mitigation and Intervention of Fake News

References

  • Bettencourt, Luís MA, et al. "The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models." Physica A: Statistical Mechanics and its Applications 364 (2006): 513-536.

  • Bharathi, Shishir, David Kempe, and Mahyar Salek. "Competitive influence maximization in social networks." International workshop on web and internet economics. Springer, Berlin, Heidelberg, 2007.

  • Budak, Ceren, Divyakant Agrawal, and Amr El Abbadi. "Limiting the spread of misinformation in social networks." Proceedings of the 20th international conference on World wide web. ACM, 2011.

  • Kempe, David, Jon Kleinberg, and Éva Tardos. "Maximizing the spread of influence through a social network." Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2003.

  • Khalil, Elias Boutros, Bistra Dilkina, and Le Song. "Scalable diffusion-aware optimization of network topology." Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2014.

  • Konstantinou, Loukas, Ana Caraban, and Evangelos Karapanos. "Combating Misinformation Through Nudging.” Co-Inform Project. 2019.

  • Medya, Sourav, Arlei Silva, and Ambuj Singh. "Influence Minimization Under Budget and Matroid Constraints: Extended Version." arXiv preprint arXiv:1901.02156 (2019).

  • Nguyen, Nam P., et al. "Containment of misinformation spread in online social networks." Proceedings of the 4th Annual ACM Web Science Conference. ACM, 2012.

  • Prakash, B. Aditya, et al. "Threshold conditions for arbitrary cascade models on arbitrary networks." Knowledge and information systems 33.3 (2012): 549-575.

  • Prakash, B. Aditya, et al. "Fractional immunization in networks." Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2013.

  • Tong, Guangmo, et al. "An efficient randomized algorithm for rumor blocking in online social networks." IEEE Transactions on Network Science and Engineering (2017).

  • Tong, Hanghang, et al. "On the vulnerability of large graphs." 2010 IEEE International Conference on Data Mining. IEEE, 2010.

  • Vo, Nguyen, and Kyumin Lee. "The rise of guardians: Fact-checking url recommendation to combat fake news." The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, 2018

  • Zhang, Yao, and B. Aditya Prakash. "Dava: Distributing vaccines over networks under prior information." Proceedings of the 2014 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2014.

  • Zhang, Yao, and B. Aditya Prakash. "Data-aware vaccine allocation over large networks." ACM Transactions on Knowledge Discovery from Data (TKDD) 10.2 (2015): 20.

  • Zhao, Laijun, et al. "SIHR rumor spreading model in social networks." Physica A: Statistical Mechanics and its Applications 391.7 (2012): 2444-2453.

Future Opportunities

References

  • Lucas Graves. Understanding the promise and limits of automated fact-checking. Factsheet 2018.

  • Naeemul Hassan, Gensheng Zhang, Fatma Arslan, Josue Caraballo, Damian Jimenez, Siddhant Gawsane, Shohedul Hasan et al. ClaimBuster: the first-ever end-to-end fact-checking system. PVLDB 2017.

  • Rene Speck, Diego Esteves, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo. Defacto-a multilingual fact validation interface. ISWC 2015.


原文链接:

https://combatingfakenewstutorial.github.io/vldb19.html







请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“VLDB19FND” 就可以获取完整版PPT载链接~


04

报告内容

请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“VLDB19FND” 就可以获取完整版PPT载链接~

-END-

专 · 知


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~

专知《深度学习:算法到实战》课程全部完成!560+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
10

相关内容

VLDB是面向数据管理和数据库研究人员、供应商、从业人员、应用程序开发人员等用户的重要国际年度论坛。VLDB 2019会议将以研究报告,教程,演示和研讨会为特色。由于它们是21世纪新兴应用程序的技术基石,因此它将涵盖数据管理,数据库和信息系统研究中的问题。 官网地址:http://dblp.uni-trier.de/db/conf/vldb/
【DeepMind推荐】居家学习的人工智能干货资源大全集
专知会员服务
108+阅读 · 2020年6月27日
少标签数据学习,54页ppt
专知会员服务
196+阅读 · 2020年5月22日
最新《Deepfakes:创造与检测》2020综述论文,36页pdf
专知会员服务
62+阅读 · 2020年5月15日
最新《深度学习行人重识别》综述论文,24页pdf
专知会员服务
80+阅读 · 2020年5月5日
【综述】生成式对抗网络GAN最新进展综述
专知
57+阅读 · 2019年6月5日
热点! 虚假新闻检测综述
专知
111+阅读 · 2019年2月26日
揭秘AI识别虚假新闻背后的原理
DeepTech深科技
10+阅读 · 2018年8月5日
深度学习综述(下载PDF版)
机器学习算法与Python学习
27+阅读 · 2018年7月3日
FCS 12(1) 文章 | 知识图谱综述
FCS
8+阅读 · 2018年3月12日
Arxiv
7+阅读 · 2019年10月6日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
3+阅读 · 2018年4月3日
VIP会员
相关VIP内容
【DeepMind推荐】居家学习的人工智能干货资源大全集
专知会员服务
108+阅读 · 2020年6月27日
少标签数据学习,54页ppt
专知会员服务
196+阅读 · 2020年5月22日
最新《Deepfakes:创造与检测》2020综述论文,36页pdf
专知会员服务
62+阅读 · 2020年5月15日
最新《深度学习行人重识别》综述论文,24页pdf
专知会员服务
80+阅读 · 2020年5月5日
相关资讯
【综述】生成式对抗网络GAN最新进展综述
专知
57+阅读 · 2019年6月5日
热点! 虚假新闻检测综述
专知
111+阅读 · 2019年2月26日
揭秘AI识别虚假新闻背后的原理
DeepTech深科技
10+阅读 · 2018年8月5日
深度学习综述(下载PDF版)
机器学习算法与Python学习
27+阅读 · 2018年7月3日
FCS 12(1) 文章 | 知识图谱综述
FCS
8+阅读 · 2018年3月12日
Top
微信扫码咨询专知VIP会员