海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
由于自旋轨道耦合效应、电子-电子相互作用和局域f电子与流动的导电电子之间的复杂相互作用,含f电子系统的建模很有挑战性。这种复杂性不仅丰富了材料的电子特性,也使其适用于各种技术应用。
在此背景下,来自美国东北大学的Hasnain Hafiz教授和洛斯阿拉莫斯国家实验室的科研人员,建立了有关f电子的结构数据库,提出并实现了一种数据驱动的方法来帮助材料的发现过程。他们通过部署最先进的算法和查询工具,采用基于现有锕系和镧系化合物的大型模拟数据集来训练学习模型。与其它数据库不同,该计算数据是用所有电子生成的,从而更好地描述这些材料。这样获得的机器学习模型可用于搜索和寻找具有所需电子和物理性能的新型稳定材料。他们讨论了f电子数据库的基本结构,以及对结构数据文件清理和修正的方法。实验信息有时会丢失一些重要的数据,但本研究使用人工神经网络纠正了这种不完整性,从而能够正确地确定晶体系统(精确度达99.1%)。为验证数据库的可靠性,该工作成功找出了8种已知的双钙钛矿(AA'BB'CC')材料,并额外预测了4种未知的稳定双钙钛矿材料。此外,他们还用这个数据库中的电子结构分析工具,发现了元素周期表中f电子的局域化趋势。不难看出,这种数据驱动的方法可以促进新型f电子材料的发现,并带来诸多新的应用。
该文近期发表于npj Computational Materials 4: 63 (2018),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
A high-throughput data analysis and materials discovery tool for strongly correlated materials
Hasnain Hafiz, Adnan Ibne Khair, Hongchul Choi, Abdullah Mueen, Arun Bansil, Stephan Eidenbenz, John Wills, Jian-Xin Zhu, Alexander V. Balatsky & Towfiq Ahmed
Modeling of f-electron systems is challenging due to the complex interplay of the effects of spin–orbit coupling, electron–electron interactions, and the hybridization of the localized f-electrons with itinerant conduction electrons. This complexity drives not only the richness of electronic properties but also makes these materials suitable for diverse technological applications. In this context, we propose and implement a data-driven approach to aid the materials discovery process. By deploying state-of-the-art algorithms and query tools, we train our learning models using a large, simulated dataset based on existing actinide and lanthanide compounds. The machine-learned models so obtained can then be used to search for new classes of stable materials with desired electronic and physical properties. We discuss the basic structure of our f-electron database, and our approach towards cleaning and correcting the structure data files. Illustrative examples of the applications of our database include successful prediction of stable superstructures of double perovskites and identification of a number of physically-relevant trends in strongly correlated features of f-electron based materials.
扩展阅读
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方