简单的交叉熵损失函数,你真的懂了吗?

2020 年 11 月 27 日 深度学习自然语言处理

来源丨AI有道
编辑丨极市平台

说起交叉熵损失函数「Cross Entropy Loss」,脑海中立马浮现出它的公式:

我们已经对这个交叉熵函数非常熟悉,大多数情况下都是直接拿来使用就好。但是它是怎么来的?为什么它能表征真实样本标签和预测概率之间的差值?上面的交叉熵函数是否有其它变种?也许很多朋友还不是很清楚!没关系,接下来我将尽可能以最通俗的语言回答上面这几个问题。

1. 交叉熵损失函数的数学原理

我们知道,在二分类问题模型:例如逻辑回归「Logistic Regression」、神经网络「Neural Network」等,真实样本的标签为 [0,1],分别表示负类和正类。模型的最后通常会经过一个 Sigmoid 函数,输出一个概率值,这个概率值反映了预测为正类的可能性:概率越大,可能性越大。

Sigmoid 函数的表达式和图形如下所示:

其中 s 是模型上一层的输出,Sigmoid 函数有这样的特点:s = 0 时,g(s) = 0.5;s >> 0 时, g ≈ 1,s << 0 时,g ≈ 0。显然,g(s) 将前一级的线性输出映射到 [0,1] 之间的数值概率上。这里的 g(s) 就是交叉熵公式中的模型预测输出 。

我们说了,预测输出即 Sigmoid 函数的输出表征了当前样本标签为 1 的概率:

很明显,当前样本标签为 0 的概率就可以表达成:

重点来了,如果我们从极大似然性的角度出发,把上面两种情况整合到一起:

不懂极大似然估计也没关系。我们可以这么来看:

当真实样本标签 y = 0 时,上面式子第一项就为 1,概率等式转化为:

当真实样本标签 y = 1 时,上面式子第二项就为 1,概率等式转化为:

两种情况下概率表达式跟之前的完全一致,只不过我们把两种情况整合在一起了。

重点看一下整合之后的概率表达式,我们希望的是概率 P(y|x) 越大越好。首先,我们对 P(y|x) 引入 log 函数,因为 log 运算并不会影响函数本身的单调性。则有:

我们希望 log P(y|x) 越大越好,反过来,只要 log P(y|x) 的负值 -log P(y|x) 越小就行了。那我们就可以引入损失函数,且令 Loss = -log P(y|x)即可。则得到损失函数为:

非常简单,我们已经推导出了单个样本的损失函数,是如果是计算 N 个样本的总的损失函数,只要将 N 个 Loss 叠加起来就可以了:

这样,我们已经完整地实现了交叉熵损失函数的推导过程。

2. 交叉熵损失函数的直观理解

可能会有读者说,我已经知道了交叉熵损失函数的推导过程。但是能不能从更直观的角度去理解这个表达式呢?而不是仅仅记住这个公式。好问题!接下来,我们从图形的角度,分析交叉熵函数,加深大家的理解。

首先,还是写出单个样本的交叉熵损失函数:

我们知道,当 y = 1 时:

这时候,L 与预测输出的关系如下图所示:

看了 L 的图形,简单明了!横坐标是预测输出,纵坐标是交叉熵损失函数 L。显然,预测输出越接近真实样本标签 1,损失函数 L 越小;预测输出越接近 0,L 越大。因此,函数的变化趋势完全符合实际需要的情况。

当 y = 0 时:

这时候,L 与预测输出的关系如下图所示:

同样,预测输出越接近真实样本标签 0,损失函数 L 越小;预测函数越接近 1,L 越大。函数的变化趋势也完全符合实际需要的情况。

从上面两种图,可以帮助我们对交叉熵损失函数有更直观的理解。无论真实样本标签 y 是 0 还是 1,L 都表征了预测输出与 y 的差距。

另外,重点提一点的是,从图形中我们可以发现:预测输出与 y 差得越多,L 的值越大,也就是说对当前模型的 “ 惩罚 ” 越大,而且是非线性增大,是一种类似指数增长的级别。这是由 log 函数本身的特性所决定的。这样的好处是模型会倾向于让预测输出更接近真实样本标签 y。

3. 交叉熵损失函数的其它形式

什么?交叉熵损失函数还有其它形式?没错!我刚才介绍的是一个典型的形式。接下来我将从另一个角度推导新的交叉熵损失函数。

这种形式下假设真实样本的标签为 +1 和 -1,分别表示正类和负类。有个已知的知识点是Sigmoid 函数具有如下性质:

这个性质我们先放在这,待会有用。

好了,我们之前说了 y = +1 时,下列等式成立:

如果 y = -1 时,并引入 Sigmoid 函数的性质,下列等式成立:

重点来了,因为 y 取值为 +1 或 -1,可以把 y 值带入,将上面两个式子整合到一起:

这个比较好理解,分别令 y = +1 和 y = -1 就能得到上面两个式子。

接下来,同样引入 log 函数,得到:

要让概率最大,反过来,只要其负数最小即可。那么就可以定义相应的损失函数为:

还记得 Sigmoid 函数的表达式吧?将 g(ys) 带入:

好咯,L 就是我要推导的交叉熵损失函数。如果是 N 个样本,其交叉熵损失函数为:

接下来,我们从图形化直观角度来看。当 y = +1 时:

这时候,L 与上一层得分函数 s 的关系如下图所示:

横坐标是 s,纵坐标是 L。显然,s 越接近真实样本标签 1,损失函数 L 越小;s 越接近 -1,L 越大。

另一方面,当 y = -1 时:

这时候,L 与上一层得分函数 s 的关系如下图所示:

同样,s 越接近真实样本标签 -1,损失函数 L 越小;s 越接近 +1,L 越大。

4. 总结

本文主要介绍了交叉熵损失函数的数学原理和推导过程,也从不同角度介绍了交叉熵损失函数的两种形式。第一种形式在实际应用中更加常见,例如神经网络等复杂模型;第二种多用于简单的逻辑回归模型。


   
   
     
下载一:中文版!学习TensorFlow、PyTorch、机器学习、深度学习和数据结构五件套!
后台回复【五件套


下载二:南大模式识别PPT
后台回复南大模式识别



说个正事哈



由于微信平台算法改版,公号内容将不再以时间排序展示,如果大家想第一时间看到我们的推送,强烈建议星标我们和给我们多点点【在看】。星标具体步骤为:

(1)点击页面最上方深度学习自然语言处理”,进入公众号主页。

(2)点击右上角的小点点,在弹出页面点击“设为星标”,就可以啦。

感谢支持,比心



投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等

记得备注呦


推荐两个专辑给大家:
专辑 | 李宏毅人类语言处理2020笔记
专辑 | NLP论文解读
专辑 | 情感分析

整理不易,还望给个在看!

登录查看更多
0

相关内容

【经典书】线性代数,352页pdf教你应该这样学
专知会员服务
105+阅读 · 2020年12月20日
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
专知会员服务
124+阅读 · 2020年11月25日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
从信息论的角度来理解损失函数
深度学习每日摘要
17+阅读 · 2019年4月7日
从最优化的角度看待 Softmax 损失函数
极市平台
31+阅读 · 2019年2月21日
换个角度看GAN:另一种损失函数
机器学习算法与Python学习
7+阅读 · 2019年1月1日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
机器学习者都应该知道的五种损失函数!
数盟
5+阅读 · 2018年6月21日
教你简单解决过拟合问题(附公式)
数据派THU
4+阅读 · 2018年2月13日
理解神经网络的激活函数
论智
7+阅读 · 2018年1月8日
【直观详解】信息熵、交叉熵和相对熵
机器学习研究会
10+阅读 · 2017年11月7日
干货 | 深度学习之损失函数与激活函数的选择
机器学习算法与Python学习
15+阅读 · 2017年9月18日
机器学习(16)之支持向量机原理(二)软间隔最大化
机器学习算法与Python学习
6+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年1月28日
Does Data Augmentation Benefit from Split BatchNorms
Arxiv
3+阅读 · 2020年10月15日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
【经典书】线性代数,352页pdf教你应该这样学
专知会员服务
105+阅读 · 2020年12月20日
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
专知会员服务
124+阅读 · 2020年11月25日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
相关资讯
从信息论的角度来理解损失函数
深度学习每日摘要
17+阅读 · 2019年4月7日
从最优化的角度看待 Softmax 损失函数
极市平台
31+阅读 · 2019年2月21日
换个角度看GAN:另一种损失函数
机器学习算法与Python学习
7+阅读 · 2019年1月1日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
机器学习者都应该知道的五种损失函数!
数盟
5+阅读 · 2018年6月21日
教你简单解决过拟合问题(附公式)
数据派THU
4+阅读 · 2018年2月13日
理解神经网络的激活函数
论智
7+阅读 · 2018年1月8日
【直观详解】信息熵、交叉熵和相对熵
机器学习研究会
10+阅读 · 2017年11月7日
干货 | 深度学习之损失函数与激活函数的选择
机器学习算法与Python学习
15+阅读 · 2017年9月18日
机器学习(16)之支持向量机原理(二)软间隔最大化
机器学习算法与Python学习
6+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员