现在的人工智能已经呈指数级增长。比如,自动驾驶汽车的时速达数百万英里,IBM Watson在诊断病人的情况上比医生更好,AlphaGo击败了世界冠军。这其中,人工智能扮演着关键的角色。
随着人工智能的进一步发展,人们也提出了更高的要求。希望它们可以解决更加复杂的问题。而解决问题的核心就是深度学习。
TensorFlow是使用数据流图像进行数值计算的开源软件库。图中的节点代表数学运算,而图的边缘代表在它们之间传递多维数据数组。灵活的体系结构允许您使用单个API将计算部署到桌面、服务器或移动设备中的一个或多个CPU或GPU。TensorFlow最初是由谷歌机器智能研究组织内的Google Brain 的研究人员和工程师开发的,目的是进行机器学习和深度神经网络研究,该系统的通用性足以应用于其他领域。
它被全球各大公司所使用,包括Airbnb、Ebay、Dropbox、Snapchat、Twitter、优步,SAP、高通、IBM,英特尔,当然还有Google!
1.深度学习的先决条件:Python中的线性回归
数据科学:从零开始学习线性回归,并使用Python构建自己的工作程序以进行数据分析。
本课程将教授您一种在机器学习、数据科学和统计学中使用的一种流行技术:线性回归。它将从根本上做到:解决方案的推导以及现实世界问题的应用。它将向您展示如何在Python中编写自己的线性回归模块。
线性回归是您可以学习的最简单的机器学习模型。在第一部分,它将向您展示如何使用一维线性回归来证明莫尔定律是正确的。在下一节中,它将把一维线性回归扩展到任意线性回归——换句话说,它将创建一个可以从多个输入中学习的机器学习模型。
最后,我们将讨论一些当您执行数据分析时需要注意的实际机器学习问题,例如泛化、过度拟合、训练测试分割等。
2.深度学习的先决条件:Python中的逻辑回归
本课程是深度学习和神经网络的入门课程——它涵盖了机器学习、数据科学和统计学中常用的基本技术:逻辑回归。
本课程为您提供了许多实用示例,以便您可以真正了解如何使用深度学习。在整个课程中,它将通过您开展的课程项目,向您展示如何根据用户数据预测用户行为,比如用户是否在移动设备上,他们查看的产品数量,他们在您的网站上逗留了多久,他们是否是回访者以及他们访问的时间等等。
课程结束后的另一个项目将向您展示了如何使用深度学习来进行面部表情识别。想象一下,仅仅基于图片就能够预测某人的情绪该多么酷!
3.用Python进行深度学习的完整指南
本课程将指导您如何使用Google的Tensor Flow框架来创建用于深度学习的人工神经网络。它旨在让您轻松理解Google Tensor Flow框架的复杂性。引导您充分利用Tensor Flow框架的完整指南,同时向您展示深度学习中的最新技术。这样做的目的是平衡理论和实践。同时它还配有大量的练习方便您测试新技能。
本课程涵盖神经网络基础、张量流基础、人工神经网络、密集连接网络、卷积神经网络、递归神经网络、AutoEncoders、强化学习、OpenAI Gym等。
4.使用Python和Keras实现从零到深度学习
本课程旨在提供深度学习的完整介绍。它的目标读者是熟悉Python的初学者和中级程序员和数据科学家,他们希望了解深度学习技术并将其应用于各种问题。
它将首先回顾深度学习应用以及机器学习工具和技术的概述。然后介绍人工神经网络并解释如何训练它们以解决回归和分类问题。在课程的其余部分中,还将介绍并解释包括完全连接、卷积和递归神经网络在内的几种体系结构,并对每种体系结构解释理论给出大量的示例应用。
5.深度学习:Python中的卷积神经网络
这门课程全部是关于如何使用卷积神经网络进行计算机视觉深度学习。这是当前图像分类的最新技术,它们在像MNIST这样的任务中击败了vanilla deep networks。在StreetView House Number(SVHN)数据集中——它使用不同角度的较大彩色图像——因此计算和分类任务的难度都会变得更加严格。但是它将通过卷积神经网络或CNN 来应对挑战。
此外,它还将向您展示如何构建可应用于音频的卷积滤波器,如回声效应,以及如何为图像效果构建滤波器,如高斯模糊和边缘检测。您还得联系到生物学、讨论卷积神经网络是如何受到动物视觉皮层的启发。
6.深度学习:Python中的递归神经网络
在课程的第一部分中,我们将添加时间概念到我们的神经网络。它将向您介绍简单递归单位,也称为Elman单位。
在本课程的下一部分中,您需要重新审视循环神经网络最流行的应用之一——语言建模。
神经网络另一个流行的语言应用是词向量或词嵌入。最常见的技术称为Word2Vec,它会告诉您如何使用递归神经网络来创建词向量。
在接下来的部分中,您将看到及受“吹捧”的LSTM和长期/短期记忆单元,以及更现代、更高效的GRU或门控循环单元。您可以把它们应用于某些实际的问题,例如从维基百科数据中学习语言模型,并将结果可视化为单词嵌入。
7.深度学习A-Z™:手动式人工神经网络
在本课程中,您将深入了解人工神经网络,并在实践中应用人工神经网络。理解卷积神经网络,在实践中应用卷积神经网络;理解循环神经网络,在实践中应用循环神经网络;理解自组织映射,在实践中应用自组织映射;理解玻尔兹曼机器,在实践中应用玻尔兹曼机器。
8. Python中的现代深度学习
在本课程中,您将了解批量和随机梯度下降。这是两种常用的技术,可以让您在每次迭代时只对一小部分数据进行训练,从而大大加快训练时间。您还将了解动量,这将会有助于通过当地最低标准,并防止您的学习速度过于缓慢。您还将了解如AdaGrad、RMSprop和Adam等自适应学习速率技术,通过它们帮助您加快训练速度。
9.使用Python进行自然语言处理的深度学习
在本课程中,您将看到高级NLP.It,它将向您展示word2vec的工作原理。从理论到实施,您会发现它仅仅是您熟悉的技能的应用。nWord2vec很有趣,因为它神奇地将单词映射到一个可以找到类比的矢量空间,例如:king - man = queen - woman,France - Paris = England - London,December - November - July – June。在GLoVe方法中,它也可以找到单词向量,使用了一种称为矩阵分解的技术,这是一种用于反编译系统的流行算法。令人惊讶的是,由GLoVe生成的单词向量与由word2vec生成的单词向量一样好,并且您将更容易看到一些经典的NLP问题。如词类标注和实体命名识别,使用递归神经网络解决它们。您会发现几乎任何问题都可以使用神经网络来解决,但真的不是任何问题都可以。
最后,您将学习递归神经网络,它将帮助我们解决情感分析中的否定问题。递归神经网络利用了句子具有树状结构的特性。我们终于可以脱离一大堆单词。
10.人工智能:Python中的强化学习
当人们谈论人工智能时,他们通常不是指有监督和无监督的机器学习。与我们认为的人工智能所做的事情相比,人们更多指的是像玩象棋和围棋、驾驶汽车、以超人的水平击败视频游戏。(即,强化学习)强化学习因为这些事情而变得流行起来。同时,强化学习开辟了一个全新的“世界”。
正如您将在本课程中学习的那样,强化学习模式与有监督学习和无监督学习相比,它们彼此不同。强化学习引发了行为心理学和神经科学领域的新的,令人惊异的见解。
11.数据科学、深度学习和Python机器学习
如果您有一些编程或脚本经验,本课程将向您介绍真正的数据科学家和机器学习从业人员在本行业使用的技术——并为您迈入这一热门职业道路做好准备。
每个概念都是用简单的英文介绍的,从而避免了数学符号和术语的混淆。然后使用Python代码进行演示。您可以尝试使用和构建它们,并且可以保留以供将来参考的备注。在这门课程中,您不会重点学习这些算法的学术性、深度性的数学涵盖——重点是对它们的实际理解和应用。最后,您将得到一个最终的项目来应用您学到的知识。
AI中国
深度学习是机器学习的一种方法。它一般指通过多个处理层来学习非线性函数。
什么是生成分类器?
生成分类器使用Bayes规则将给定类c的特征F的概率转换为对给定类F的特征c的预测。由分类器预测的类通常是产量最高的类P(c、F)。常用的生成分类器是Naive Bayes 分类器。它有两层(一个用于特征F和一个用于C类)。
基于生成分类器的深度学习
深度学习首先需要的是一个隐藏的层。因此,您可以在C层和F层之间再添加一层H以获得Hierarchical Bayesian分类器(HBC)。
在HBC中,你有两种方式计算P(c、F):
第一个等式使用和(POS)的乘积来计算P(c | F)的值。第二个等式使用产品和(SOP)来计算P(c | F)的值。
PoS方程
作者发现了关于这两个方程的一些非常有趣的东西。
事实证明,如果使用第一个方程。则HBC简化为Naive Bayes分类器。这样的HBC只能学习线性(或二次)的决策处理。
如图1中所示的离散异函数。
可以看出,只一条直线是无法将黑点与白点分开。要想正确的区分它们只能通过非线性分类器。
如果您通过上图中的数据训练多项式Naive Bayes分类器,则会得到下图。
请注意,虚线区域表示类别1,清除区域表示类别0。
可以看出,不管线的角度如何,四个中的至少一个点将被错误分类。例如图中,{5,1}处的点错误归类为0。(清除区域表示类别0)。
但是使用POS HBC,则会得到相同的结果。
SOP方程
通过研究。作者发现,如果使用第二个方程,会发生一些令人惊奇的事情。
有了“产品和”方程,HBC可以进行深度学习。
SOP +多项分布
下图显示了由多项非线性HBC学习的决策处理。
整个图由穿过原点的两条直线组成。并将数据点分为两个必需的类别。
由于{1,1}和{5,5}处的点落入表示分类0的清晰圆锥区域,而其他两点落入代表分类1的虚线区域,所已四个点都被正确分类。
进而得出结论,多项非线性分层Bayes分类器可以学图1的非线性函数。
高斯分布
高斯非线性HBC学习的图像如下图所示。
图像由分类后的数据点的两条二次曲线组成。
所以说,高斯非线性HBC也可以学习图1的非线性函数。
结论
由于SOP HBC是多层的(具有一层隐藏节点),并且可以学习非线性决策。因此可以说它们具有深度学习的能力。
人工智能赛博物理操作系统
AI-CPS OS
“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。
AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务和数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。
领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:
重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?
重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?
重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?
AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的数字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:
精细:这种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。
智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。
高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。
不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。
边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。
AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:
创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;
对现有劳动力和实物资产进行有利的补充和提升,提高资本效率;
人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间。
给决策制定者和商业领袖的建议:
超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;
迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新
评估未来的知识和技能类型;
制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开
发过程中确定更加明晰的标准和最佳实践;
重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临
较高失业风险的人群;
开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。
子曰:“君子和而不同,小人同而不和。” 《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。
如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!
新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。
产业智能官 AI-CPS
用“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
长按上方二维码关注微信公众号: AI-CPS,更多信息回复:
新技术:“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能金融”、“智能零售”、“智能驾驶”、“智能城市”;新模式:“财富空间”、“工业互联网”、“数据科学家”、“赛博物理系统CPS”、“供应链金融”。
本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!
版权声明:由产业智能官(公众号ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com