本文为 12 月 20 日,约翰霍普金斯大学 CLSP 实验室博士生——梅洪源博士在第 20 期 PhD Talk 中的直播分享实录。
本期 PhD Talk,来自约翰霍普金斯大学 CLSP 实验室的博士生梅洪源,将为大家带来事件流、point processes 和 Hawkes process 的简要介绍,以及 NIPS 2017 录用论文 The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process 的深度解读。
本文提出了一个通用的连续时间序列模型 — Neural Hawkes Process,用来学习事件流中不同事件之间的影响关系,进而对未来事件的发生时间和类型进行预测。
该模型在传统 Hawkes process 的基础上,用 Recurrent Neural Network 来总结事件流的历史信息,并动态地估计不同时刻不同事件之间复杂的相互影响关系,进而得出未来事件的发生时间和类型的概率分布。
此模型可以用于多种事件流的分析,包括医学诊断,消费者行为,和社交网络活动的预测等,并在多个数据集上表现出了显著的优势。
■ 论文 | The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process
■ 链接 | https://www.paperweekly.site/papers/438
■ 作者 | Hongyuan Mei, Jason Eisner
>>>> 获取完整PPT和视频
关注“PaperWeekly”微信公众号,回复“20171220”获取下载链接。
我是彩蛋
解锁新功能:热门职位推荐!
PaperWeekly小程序升级啦
今日arXiv√猜你喜欢√热门职位√
找全职找实习都不是问题
解锁方式
1. 识别下方二维码打开小程序
2. 用PaperWeekly社区账号进行登陆
3. 登陆后即可解锁所有功能
职位发布
请添加小助手微信(pwbot01)进行咨询
长按识别二维码,使用小程序
*点击阅读原文即可注册
点击以下标题查看往期实录:
关于PaperWeekly
PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。