分享主题:Beyond Universal Saliency: Personalized Saliency Prediction with Multi-task CNN
分享人:徐衍钰,上海科技大学信息学院三年级博士生,导师为高盛华教授。2011 年本科毕业于大连理工大学。主要研究方向为计算机视觉,例如显著性分析、人脸对齐等。
显著性检测是计算机视觉中长期存在的问题。现有的大部分研究都集中在探索用户间普遍存在的显著性模型,即缺乏对个体在性别、年龄、习惯上差异的重视。在这篇 IJCAI 文章中,作者首次提出了个人显著性预测任务,并建立了首个个人显著性数据库,同时提出基于卷积神经网络的多任务个人显著性预测模型(Multi-Task Convolutional Neural Network),实验结果验证了模型的良好的性能。
10 月 13 日(周五)晚 20:00,AI 研习社微信群
▷ 观看完整回顾大概需要 49 分钟
新人福利
关注 AI 研习社(okweiwu),回复 1 领取
【超过 1000G 神经网络 / AI / 大数据,教程,论文】