作者:忆昔,阿里首猜推荐算法工程师,欢迎勾搭交流,email: yufei.fyf@alibaba-inc.com
一个标准的工业推荐系统通常由三个阶段依次组成:召回、排序和重排。一直以来,召回和排序得到了持续的关注和长足的发展。而重排,由于直接从输入商品列表中生成了最终推荐列表及其展示顺序,也在逐渐受到关注并且展示出极大的潜力。这里总结了这么几类已发表并广泛接受的重排或者 LTR 工作:
1.【Point-wise 模型】和经典的 CTR 模型基本结构类似,如 DNN [8], WDL [9] 和 DeepFM [10]。和排序相比优势主要在于实时更新的模型、特征和调控权重。随着工程能力的升级,ODL [11] 和实时特征逐渐合并到排序阶段并且取得了较大提升。
2.【Pair-wise 模型】通过 pair-wise 损失函数来比较商品对之间的相对关系。具体来说,RankSVM [12], GBRank [13] 和 RankNet [2] 分别使用了 SVM、GBT 和 DNN。但是,pair-wise 模型忽略了列表的全局信息,而且极大地增加了模型训练和预估的复杂度。
3.【List-wise 模型】建模输入商品列表的整体信息和对比信息,并通过 list-wise 损失函数来比较序列商品之间的关系。LambdaMart [14]、MIDNN [3]、DLCM[6]、PRM [5] 和 SetRank [4] 分别通过 GBT、DNN、RNN、Self-attention 和 Induced self-attention 来提取这些信息。随着工程能力的升级,输入序列的信息和对比关系也上提到排序阶段中提取。
4.【Generative 模型】主要分为两种,一种如考虑了前序信息的,如 MIRNN [3] 和 Seq2Slate [15] 都通过 RNN 来提取前序信息,再通过 DNN 或者 Pointer-network 来从输入商品列表中一步步地生成最终推荐列表。最近的组合优化工作 Exact-K [16] 注重于直接对序列整体收益进行建模,设计了两段式结构,一个用来预测整体收益以指导另一个生成最终推荐列表。
5.【Diversity 模型】最近有很多工作考虑最终推荐列表里的相关性和多样性达到平衡,如 [17~20]。
我们最近做了不少重排的工作,一定程度上推动了重排的架构革新,等公开了再发出来~
公众号后台回复【rerank】可打包下载rerank经典论文集~
[1] Cao, Zhe, et al. "Learning to rank: from pairwise approach to listwise approach." Proceedings of the 24th international conference on Machine learning. 2007.
[2] Burges, Chris, et al. "Learning to rank using gradient descent." Proceedings of the 22nd international conference on Machine learning. 2005.
[3] Ai, Qingyao, et al. "Learning a deep listwise context model for ranking refinement." The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018.
[4] Pang, Liang, et al. "Setrank: Learning a permutation-invariant ranking model for information retrieval." Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020.
[5] Pei, Changhua, et al. "Personalized re-ranking for recommendation." Proceedings of the 13th ACM Conference on Recommender Systems. 2019.
[6] Zhuang, Tao, Wenwu Ou, and Zhirong Wang. "Globally optimized mutual influence aware ranking in e-commerce search." arXiv preprint arXiv:1805.08524 (2018).
[7] Gong, Yu, et al. "EdgeRec: Recommender System on Edge in Mobile Taobao." Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020.
[8] Covington, Paul, Jay Adams, and Emre Sargin. "Deep neural networks for youtube recommendations." Proceedings of the 10th ACM conference on recommender systems. 2016.
[9] Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." Proceedings of the 1st workshop on deep learning for recommender systems. 2016.
[10] Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." arXiv preprint arXiv:1703.04247 (2017).
[11] Sahoo, Doyen, et al. "Online deep learning: Learning deep neural networks on the fly." arXiv preprint arXiv:1711.03705 (2017).
[12] Lee, Ching-Pei, and Chih-Jen Lin. "Large-scale linear ranksvm." Neural computation 26.4 (2014): 781-817.
[13] Zheng, Zhaohui, et al. "A regression framework for learning ranking functions using relative relevance judgments." Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. 2007.
[14] Burges, Christopher JC. "From ranknet to lambdarank to lambdamart: An overview." Learning 11.23-581 (2010): 81.
[15] Bello, Irwan, et al. "Seq2slate: Re-ranking and slate optimization with rnns." arXiv preprint arXiv:1810.02019 (2018).
[16] Gong, Yu, et al. "Exact-k recommendation via maximal clique optimization." Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019.
[17] Chen, Laming, Guoxin Zhang, and Eric Zhou. "Fast greedy map inference for determinantal point process to improve recommendation diversity." Advances in Neural Information Processing Systems. 2018.
[18] Gelada, Carles, et al. "Deepmdp: Learning continuous latent space models for representation learning." arXiv preprint arXiv:1906.02736 (2019).
[19] Gogna, Anupriya, and Angshul Majumdar. "Balancing accuracy and diversity in recommendations using matrix completion framework." Knowledge-Based Systems 125 (2017): 83-95.
[20] Wilhelm, Mark, et al. "Practical diversified recommendations on youtube with determinantal point processes." Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018.
由于微信平台算法改版,公号内容将不再以时间排序展示,如果大家想第一时间看到我们的推送,强烈建议星标我们和给我们多点点【在看】。星标具体步骤为:
(1)点击页面最上方"AINLP",进入公众号主页。
(2)点击右上角的小点点,在弹出页面点击“设为星标”,就可以啦。
感谢支持,比心。
推荐阅读
征稿启示| 200元稿费+5000DBC(价值20个小时GPU算力)
完结撒花!李宏毅老师深度学习与人类语言处理课程视频及课件(附下载)
模型压缩实践系列之——bert-of-theseus,一个非常亲民的bert压缩方法
文本自动摘要任务的“不完全”心得总结番外篇——submodular函数优化
斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用
关于AINLP
AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLPer(id:ainlper),备注工作/研究方向+加群目的。
阅读至此了,分享、点赞、在看三选一吧🙏