深度强化学习实验室报道
编辑:DeepRL
深度强化学习的快速发展最直接的应用和体现就在“游戏”领域,目前DRL技术主要在视频帧游戏(Atari)、棋牌游戏(Go)、实时策略游戏、Board 游戏、球类(Football)等游戏中有广泛的研究,然而很多人看了领域大牛、顶级研究机构发的论文,一头雾水,主要原因是一方面自身coding能力不是足够高,另外一方面已发表的论文省略了众多细节,导致无法复现进行研究。本文对paperwithcode开源的一些复现过程进行了汇总。
地址见文章末尾
本部分游戏包含了Atari,星际争霸,Dota等各类游戏。
其中复现的算法也是各种各样
具体细节如下:
# Test for OpenCL support & compatibility
sudo apt install clinfo && clinfo
# Clone github repo
git clone https://github.com/leela-zero/leela-zero
cd leela-zero
git submodule update --init --recursive
# Install build depedencies
sudo apt install cmake g++ libboost-dev libboost-program-options-dev libboost-filesystem-dev opencl-headers ocl-icd-libopencl1 ocl-icd-opencl-dev zlib1g-dev
# Use a stand alone build directory to keep source dir clean
mkdir build && cd build
# Compile leelaz and autogtp in build subdirectory with cmake
cmake ..
cmake --build .
# Optional: test if your build works correctly
./tests
开源地址
https://paperswithcode.com/area/playing-games
第35篇:α-Rank算法之DeepMind及Huawei的改进
第34篇:DeepMind-102页深度强化学习PPT(2019)
第31篇:强化学习,路在何方?
第30篇:强化学习的三种范例
第29篇:框架ES-MAML:进化策略的元学习方法
第28篇:138页“策略优化”PPT--Pieter Abbeel
第27篇:迁移学习在强化学习中的应用及最新进展
第26篇:深入理解Hindsight Experience Replay
第25篇:10项【深度强化学习】赛事汇总
第24篇:DRL实验中到底需要多少个随机种子?
第23篇:142页"ICML会议"强化学习笔记
第22篇:通过深度强化学习实现通用量子控制
第21篇:《深度强化学习》面试题汇总
第20篇:《深度强化学习》招聘汇总(13家企业)
第19篇:解决反馈稀疏问题之HER原理与代码实现
第17篇:AI Paper | 几个实用工具推荐
第16篇:AI领域:如何做优秀研究并写高水平论文?
第8期论文:2019-11-18(5篇)
第7期论文:2019-11-15(6篇)
第6期论文:2019-11-08(2篇)
第5期论文:2019-11-07(5篇,一篇DeepMind发表)
第4期论文:2019-11-05(4篇)
第3期论文:2019-11-04(6篇)
第2期论文:2019-11-03(3篇)
第1期论文:2019-11-02(5篇)
深度强化学习实验室
算法、框架、资料、前沿信息等
GitHub仓库
https://github.com/NeuronDance/DeepRL
欢迎Fork,Star,Pull Reques