智能化是近年来制造业最重要的趋势,历经过去几年的市场教育,这两年市场询问度已开始提高,而从2016年开始,IT产业掀起人工智能(AI)热潮,AI与物联网的整合将成为未来各垂直领域的主流系统,在制造业中,AI也将成为工业物联网的核心运算架构之一。
自从德国率先喊出工业4.0后,相关科技也同步的突飞猛进,包括工业物联网、大数据分析、机器人等技术发展至今,已渐渐打造出新型态的智能工厂与全新的工业化标准。
尤其近几年来,人工智能(AI)浪潮袭来,更赋予工业4.0有了全新的发展面向,明确分野自动化及智动化的差异,包括机器视觉、深度学习等利用算法分析为主的人工智能技术,已成为工业4.0未来发展的全新趋势,不仅让自动化与机器人的技术更为精准、制造业也开始进入如无人工厂等全新的科技领域。
图1 : 自动化是现在工业的技术根基,AI导入将全面提升自动化系统的效益。(Source: BSOCH)
就目前发展来看,智能制造有三大趋势,首先是生产网络,这部分主要是应用制造运行管理系统(Manufacturing Operations Management, MOM),协助生产价值链中的供货商获得并交换实时生产信息,供货商所提供的全部零组件都可在正确的时间以正确的顺序到达生产线,第二个趋势是虚拟仿真与真实物理系统的完美融合,在生产制造过程中的每一步都将在虚拟世界被设计、模拟及优化,为真实的物理世界包括物料、产品、工厂等建立起一个高度仿真的数字双生(Digital Twin,Twin Model),第三个趋势则是网宇实体系统(Cyber-Physical System,CPS),在此系统中,产品信息都将被输入到产品零组件本身,它们会根据自身生产需求,直接与生产系统和设备沟通,发出下一道生产工序指令,指挥设备自行组织生产,这种自主生产模式能够满足每位用户的订制化需求。
以大数据建立运算模式
上述的三大趋势,未来都会与AI有一定程度的整合,例如在产线监控、机器人、无人搬运车等,都将有AI运算功能设计,主因在于大量订制化的趋势,工厂需要面对的产品类型、产线调动等各种生产情境的难度也会大增,虽然透过传感器及大数据分析,管理者已经可以掌握更多用来帮助决策的信息,但也因为信息量大量增加,增加管理者的信息分析压力,加上市场变化愈来愈快速,人类的分析速度恐怕已经愈来愈难跟上提供速度愈来愈快的前端数据,自然也就更难让制造现场的机台能够迅速反应客户需求,AI应用于制造业,将可让系统从大数据分析找出规律性建立模式,进而学习避免前面发生的错误,甚至做到提前预测,应用于制造领域,不仅可以缩短停机时间,更可适时做出产线调整,减少呆料及废料的发生频率。
图2 : 连网是工业物联网架构的基础,未来AI将会分析设备设网所取得的大量数据,作出具智能的判断与建议。(Source: Process on line)
对工业物联网来说,取得数据和分析数据是核心任务,而来自传感器的数据点经过多个阶段才能转化为可操作的见解,工业物联网平台包括可扩展的数据处理流程,能够处理需要立即关注的实时数据,以及仅在一段时间内有意义的数据,当检测到压力和温度阈值的异常组合之后,物联网平台关闭液化石油气灌装机可能已经太晚了,应该在毫秒之内检测到异常,然后依规则触发立即反应。
就目前发展来看,AI有几种算法,例如热点路径分析的核心是负责检测异常的规则引擎,物联网平台嵌入复杂的规则引擎,可以从传感器数据流动态评估复杂的模式,由了解模式和数据格式的领域专家来定义规则引擎的基准阈值和路由逻辑,这种逻辑作为规则引擎在编排讯息流中的关键输入,在数据点移动到数据处理流程下一个阶段之前,为每个数据点定义嵌套的语句条件,规则引擎已经成为物联网平台的核心,而机器学习的关键领域之一是从现有数据集中找到模式,将类似的数据点分组,并预测未来数据点的价值。
机器学习有关的高阶算法可用于分类和预测分析,由于这些算法可以从现有数据中学习,且大多数物联网数据都是基于时间序列,因此这些算法可以根据历史数据预测传感器的未来值,这些多种机器学习算法的组合,将可替代工业物联网平台中的传统规则引擎,虽然领域专家仍然需要根据条件定义采取行动,但这些智能算法提供更高的准确性和精准度。
AI + HI大幅提升效益
工业物联网中的机器学习最大应用之一是设备的预测性维护,透过关联性和分析模式变化来预测设备故障,并报告如设备的剩余使用寿命等关键指标,预测维护未来也可应用在航空航天、制造、汽车、运输、物流和供应链等领域,例如预测模型安排至汽车服务中心,在航空业中,预测维护方案的目标是根据维护历史和飞行路线讯息等相关数据来预测航班延迟或取消的可能性。
图3 : 在工业领域,AI与HI必须协力合作,方能创造系统最大价值。(Source:Universal Robot)
观察物联网的发展态势,目前工业物联网是所有垂直应用中,发展最快的类别之一,AI在工业物联网主要是协助操作者与管理者,筛选从大量设备撷取出的数据,并做出判断,但是目前的AI并无法做出具有逻辑性的决策,因此在制造领域,AI必须与人类智慧结合,才会是系统的最佳效益。(来源:中国物联网)
科技行者
虽然人工智能已经火得一塌糊涂,但在过去的一段时间内,它与工业物联网(IIoT)结合的重要性却仍未能得到应有的重视。
据预计,物联网技术的市场价值将在2015年至2020年内达到6万亿美元,但不可思议的是,这样一个“香饽饽”却在当下的技术风口中遇冷。甚至,人工智能、区块链这样一些概念和技术在风头上也已经盖过了物联网。
对此,近来逐渐有专家开始提出,如果没有IIoT作为根基,人工智能将缺少非常重要的立足之地。他们表示,人工智能的应用需要大量的数据,而仅依靠机器学习和人工智能本身的技术,要想充分挖掘数据的价值是非常难的。
人工智能与工业物联网:相辅相成
没有了数据,也就没有了人工智能; 而物联网的价值,则在于提供海量数据。在消费品领域,物联网常常被定义为智能音箱或者智能冰箱等实际产品。但着眼于工业,物联网的工业化应用显然要比消费级更具规模也更为复杂。
通过将联网传感器技术整合至工业流程中,工业物联网能够收集生产线和供应链中实时产生的数据,再结合人工智能进行数据分析和决策,这将在工业领域带来巨大影响。
据统计,到2021年全球物联网设备所将创造的数据总量将达到每年847 ZB,这远高于2016年全年产生的数据量(218 ZB)。普华永道数字化供应链战略负责人Jens Wunderlin表示:“物联网最基本的特点在于提供一种连接技术,确保我们能够从任何对象当中实时获取特定数据。但接下来的问题是——我们该如何处理这些数据,以及如何在业务场景中落地,从而推动企业自身的运营。”
而解决办法就是,将人工智能技术引入工业,由它来处理工业物联网生成的大量数据。
Wunderlin介绍,这样的案例已经“无处不在”。在工业设计流程当中,由机器学习驱动的预测能力,将推动工业自动化的发展,同时在很大程度上降低成本。举例来说,通过人工智能与智能传感器的结合,系统不仅能够预测机器与设备何时何地需要接受高精度维护,同时还可以根据实际生产需求快速响应,并调整产量。而随着设备停机时间的缩短,整个生产线的流程优化效果也将产生巨大的实际价值。与此同时,整个供应链中的联网设备所产生的实时数据,也将为机器学习与预测分析提供大量具有参考价值的信息。
“当企业能够实现对整个全生命生产周期的预测,就会发现其中存在着大量的获益空间。其中的关键在于确定哪些领域拥有实际层面的投资意义,以及哪些领域能够强化自身的差异化优势。”Wunderlin指出。
数据与人才:智能工业物联网的瓶颈
无论企业已经或者计划将人工智能与工业物联网技术引入生产制造中,不可避免的是,在具体的实践过程中,企业都将面临一系列挑战,而这些挑战需要新的领导思维来克服。
普华永道英国通用电气联盟负责人Martin Musk表示:“目前的主要问题在于,企业的很多举措都以技术为主导。然而,多数拥有大规模内部工程体系与制造专业知识的企业,面临的挑战实际上来自文化层面。”
Musk提到,此类企业在起步阶段往往面临严重的“抵触情绪”,比如已经拥有丰富日常工作经验的工程师们并不相信数据呈现出的“真相”,因此拒绝根据数据结果进行工作。“因此,我们必须证明人工智能足以帮助最具经验的从业者以新的方式增加价值,并通过数据来帮他们分担大量工作。”Musk解释说。
通用电气公司的业务涵盖了公共事业、电力、石油与天然气、可再生能源以及工业领域各类制造、产品与服务等等,要在这么多的层面推进工业物联网应用是非常难的。对此,Musk认为,企业需要将更多的商业视角与技术解决方案结合起来,才能真正实现预期的技术收益。
“从领导者的角度来看,这要求他们充分了解企业全面数字化的发展前景、了解其中潜在的影响与风险,同时还要据此考虑组织、人员以及技术等方面的协同和调整。比如说,他们需要考虑如何以全新的思维方式进行组织结构调整,同时打破员工对新技术所能带来的实际商业利益的质疑。”Musk表示。
业务转型不可能“立竿见影”
当然,这一切都要求企业根据自己的情况,进行一定程度的内部调整。目前,以及在未来的一段时间里,技术与数据“文盲”状况在企业当中仍将持续存在,而人工智能及技术解决方案在供应和需求之间的错位问题也将依旧严峻。
对此,Wunderlin指出,当人们谈论数据分析与人工智能时,往往会将其视为一种能够“立竿见影”的技术。他们认为,只要拥有一套数据,再将其交付给机器,就可以得到完美的解决方案和决策指导。这样的“美好愿景”也许未来可能会实现,但目前的情况还远非如此,至少还需要配合专家见解才能得到理想的结果。
除此之外,企业面临的第二大挑战则是数据的质量问题。如果一台机器想要执行预测任务,就需要一个原因与一项结果。回到预测性维护的例子,传感器可能会检测到设备中存在的一项故障,而我们需要将数据进行分解并重新传输回机器,以便其通过分析理解哪个变量导致了这种即将发生的问题。
Wunderlin解释称:“对于一台机器而言,要真正解决问题,其首先需要获得质量极高的数据。”
因此,目前企业需要回答的关键问题包括:
在正确的位置是否都部署了合适的传感器?
存储的数据是否具有足够的质量,是否可用于预测分析?
是否拥有执行相关分析所需要的全部正确信息?
Wunderlin总结:“真正的挑战在于如何将正确的人员与正确的数据联系起来。虽然很多企业在基础层面已经取得了一定成功,但一旦涉及更为复杂、甚至包含数以千计传感器乃至更多潜在事件的场景,企业往往很难调整数据并找到其中的正确模式。”
当然,技术确实是保障任何人工智能或工业物联网项目得以成功落地的主要因素,但总体来讲,企业所采取的实际方案才决定着技术手段的实际效果。除了拥有世界上最出色的分析软件,企业还需具备一支精通数据的团队并愿意为此投入心力,否则有可能让所有的努力最终一无所获。
“大家需要考虑将企业战略、人员结构、技术等不同的部分结合起来以实现数字化目标,而非单纯认定‘采用一些有趣的新技术即可带来价值’的见解。必须承认的是,业务主导的人工智能与工业物联网方法将能为每个人带来助益,并帮助企业更快实现由技术创造的实际价值,但最根本的决定性因素仍然在于企业自身及其领导者的战略思维及执行方式。”Musk表示。
人工智能赛博物理操作系统
AI-CPS OS
“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。
AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务和数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。
领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:
重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?
重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?
重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?
AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的数字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:
精细:这种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。
智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。
高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。
不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。
边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。
AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:
创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;
对现有劳动力和实物资产进行有利的补充和提升,提高资本效率;
人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间。
给决策制定者和商业领袖的建议:
超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;
迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新
评估未来的知识和技能类型;
制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开
发过程中确定更加明晰的标准和最佳实践;
重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临
较高失业风险的人群;
开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。
子曰:“君子和而不同,小人同而不和。” 《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。
如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!
新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。
产业智能官 AI-CPS
用“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
长按上方二维码关注微信公众号: AI-CPS,更多信息回复:
新技术:“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能金融”、“智能零售”、“智能驾驶”、“智能城市”;新模式:“财富空间”、“工业互联网”、“数据科学家”、“赛博物理系统CPS”、“供应链金融”。
本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!
版权声明:由产业智能官(公众号ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com