极市导读
本文使用100行代码,极简的教大家入门比较标准的量化步骤,从怎么用、用在哪里、哪里不能用等问题都将涵盖。 >>加入极市CV技术交流群,走在计算机视觉的最前沿
网上很多关于量化的文章,要么就是跑一跑官方残缺的例子,要么就是过旧的API,早已经不潮流。现在比较fashion的方式,是使用 torch.fx
来做量化。本文将使用100行代码,极简的教你入门比较标准的量化步骤。这些步骤不是简单的告诉你torch.fx有什么卵用,大家都知道它有什么卵用,只是怎么用,用在哪里,哪里不能用,这些问题需要解答。本文100行代码,麻雀虽小五脏俱全,不管你量化什么模型,一顿套用就是了,出了问题我背锅。
很多古老的文章,还在用手动插入stub来做量化节点,这就好比在21世纪还在飞鸽传书。我们必然会包含一下几个完整的内容:
以上问题,本文都将囊括。
此处省略三万字,具体大家清百度。没啥好讲的。
如果你要问我现在最好的量化工具是什么,我的回答是没有。真的,不管是 nni,还是 nvidia的 pytorch_quantization ,还是nncf so on,不是说这些东西不好,而是在做的各位都是垃圾。
这些东西本质上是在做一件事情,至少从量化角度上看是这样的,但是到最后不具备通用性,当你看到 pytorch_quanzation 这个工具保存的模型体积根float32一样的时候,就会开始怀疑人生了,这tm是人干的事儿?这就好比普通人想要中杯,他便要说这是大杯。
轮子不好用,那就只能自己造轮子了。只能说,torch.fx
yyds. 用了都说好,谁用谁知道。
talk is cheap,我们直接上代码。需要注意的是,torch.fx
最好使用最新的stable版本,老版本API或有不同之处,我测试的是 `1.11`。
由于pytorch的自带的 imagnet系列模型,我们没有办法做calibration,我们用小一些的Cifra10, 不需要下载,pytorch自己可以处理,但是这就需要我们自己finetune一下。
先把finetune的代码备好:
这只是用来fintune一个我们准备去量化,并且校准的模型:
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
import torchvision
from torchvision import transforms
from torchvision.models.resnet import resnet50, resnet18
from torch.quantization.quantize_fx import prepare_fx, convert_fx
from torch.ao.quantization.fx.graph_module import ObservedGraphModule
from torch.quantization import (
get_default_qconfig,
)
from torch import optim
import os
import time
def train_model(model, train_loader, test_loader, device):
# The training configurations were not carefully selected.
learning_rate = 1e-2
num_epochs = 20
criterion = nn.CrossEntropyLoss()
model.to(device)
# It seems that SGD optimizer is better than Adam optimizer for ResNet18 training on CIFAR10.
optimizer = optim.SGD(
model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-5
)
# optimizer = optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
for epoch in range(num_epochs):
# Training
model.train()
running_loss = 0
running_corrects = 0
for inputs, labels in train_loader:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
train_loss = running_loss / len(train_loader.dataset)
train_accuracy = running_corrects / len(train_loader.dataset)
# Evaluation
model.eval()
eval_loss, eval_accuracy = evaluate_model(
model=model, test_loader=test_loader, device=device, criterion=criterion
)
print(
"Epoch: {:02d} Train Loss: {:.3f} Train Acc: {:.3f} Eval Loss: {:.3f} Eval Acc: {:.3f}".format(
epoch, train_loss, train_accuracy, eval_loss, eval_accuracy
)
)
return model
def prepare_dataloader(num_workers=8, train_batch_size=128, eval_batch_size=256):
train_transform = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
test_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
train_set = torchvision.datasets.CIFAR10(
root="data", train=True, download=True, transform=train_transform
)
# We will use test set for validation and test in this project.
# Do not use test set for validation in practice!
test_set = torchvision.datasets.CIFAR10(
root="data", train=False, download=True, transform=test_transform
)
train_sampler = torch.utils.data.RandomSampler(train_set)
test_sampler = torch.utils.data.SequentialSampler(test_set)
train_loader = torch.utils.data.DataLoader(
dataset=train_set,
batch_size=train_batch_size,
sampler=train_sampler,
num_workers=num_workers,
)
test_loader = torch.utils.data.DataLoader(
dataset=test_set,
batch_size=eval_batch_size,
sampler=test_sampler,
num_workers=num_workers,
)
return train_loader, test_loader
然后训练一波模型:
if __name__ == "__main__":
train_loader, test_loader = prepare_dataloader()
# first finetune model on cifar, we don't have imagnet so using cifar as test
model = resnet18(pretrained=True)
model.fc = nn.Linear(512, 10)
if os.path.exists("r18_row.pth"):
model.load_state_dict(torch.load("r18_row.pth", map_location="cpu"))
else:
train_model(model, train_loader, test_loader, torch.device("cuda"))
print("train finished.")
torch.save(model.state_dict(), "r18_row.pth")
接下来就是核心代码:
def quant_fx(model):
model.eval()
qconfig = get_default_qconfig("fbgemm")
qconfig_dict = {
"": qconfig,
# 'object_type': []
}
model_to_quantize = copy.deepcopy(model)
prepared_model = prepare_fx(model_to_quantize, qconfig_dict)
print("prepared model: ", prepared_model)
quantized_model = convert_fx(prepared_model)
print("quantized model: ", quantized_model)
torch.save(model.state_dict(), "r18.pth")
torch.save(quantized_model.state_dict(), "r18_quant.pth")
懂了吗?很快阿,啪一下,一个int8的量化模型就生成了。
没错,其实都不用100行,15行就够了。torch.fx 就是这么的牛逼!
我们做一个evaluation,来验证一下,在不校准的情况下,精度如何:
def evaluate_model(model, test_loader, device=torch.device("cpu"), criterion=None):
t0 = time.time()
model.eval()
model.to(device)
running_loss = 0
running_corrects = 0
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
if criterion is not None:
loss = criterion(outputs, labels).item()
else:
loss = 0
# statistics
running_loss += loss * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
eval_loss = running_loss / len(test_loader.dataset)
eval_accuracy = running_corrects / len(test_loader.dataset)
t1 = time.time()
print(f"eval loss: {eval_loss}, eval acc: {eval_accuracy}, cost: {t1 - t0}")
return eval_loss, eval_accuracy
这是evaluation的结果:
eval loss: 0.0, eval acc: 0.8476999998092651, cost: 2.8914074897766113
eval loss: 0.0, eval acc: 0.15240000188350677, cost: 1.240293264389038
可以看到,精度下降严重。此时需要进行一下校准,我直接放校准函数:
def calib_quant_model(model, calib_dataloader):
assert isinstance(
model, ObservedGraphModule
), "model must be a perpared fx ObservedGraphModule."
model.eval()
with torch.inference_mode():
for inputs, labels in calib_dataloader:
model(inputs)
print("calib done.")
that's all. 就这么简单。
如果你有其他非分类模型,也可以直接把dataloader丢进来。请注意,这里的标签并没有用到。只需要统计数据的分布即可。
非常简单。
最后我们再次eval一下:
def quant_calib_and_eval(model):
# test only on CPU
model.to(torch.device("cpu"))
model.eval()
qconfig = get_default_qconfig("fbgemm")
qconfig_dict = {
"": qconfig,
# 'object_type': []
}
model2 = copy.deepcopy(model)
model_prepared = prepare_fx(model2, qconfig_dict)
model_int8 = convert_fx(model_prepared)
model_int8.load_state_dict(torch.load("r18_quant.pth"))
model_int8.eval()
a = torch.randn([1, 3, 224, 224])
o1 = model(a)
o2 = model_int8(a)
diff = torch.allclose(o1, o2, 1e-4)
print(diff)
print(o1.shape, o2.shape)
print(o1, o2)
get_output_from_logits(o1)
get_output_from_logits(o2)
train_loader, test_loader = prepare_dataloader()
evaluate_model(model, test_loader)
evaluate_model(model_int8, test_loader)
# calib quant model
model2 = copy.deepcopy(model)
model_prepared = prepare_fx(model2, qconfig_dict)
model_int8 = convert_fx(model_prepared)
torch.save(model_int8.state_dict(), "r18.pth")
model_int8.eval()
model_prepared = prepare_fx(model2, qconfig_dict)
calib_quant_model(model_prepared, test_loader)
model_int8 = convert_fx(model_prepared)
torch.save(model_int8.state_dict(), "r18_quant_calib.pth")
evaluate_model(model_int8, test_loader)
得到结果:
eval loss: 0.0, eval acc: 0.8476999998092651, cost: 2.8914074897766113
eval loss: 0.0, eval acc: 0.15240000188350677, cost: 1.240293264389038
calib done.
eval loss: 0.0, eval acc: 0.8442999720573425, cost: 1.2966759204864502
精度瞬间恢复了。速度快了超过一半。
ok,我们用几十行代码就完成这个量化过程。并且使用校准,恢复了精度。由此可见fx的强大之处。
抛出一个问题,欢迎留言区解答:
torch.fx
量化的模型,如果export 到onnx并使用其他前推引擎推理。
公众号后台回复“CVPR 2022”获取论文打包合集下载~
# CV技术社群邀请函 #
备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)
即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群
每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~