最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码。
数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方。
这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用。二是非常简单,加上注释最长的也不过11行。
在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释。
大家可以把这篇文章收藏起来,当做工具箱使用。
这些数据清洗代码,一共涵盖8个场景,分别是:
删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳(从字符串到日期时间格式)
在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。
def drop_multiple_col(col_names_list, df):
'''
AIM -> Drop multiple columns based on their column names
INPUT -> List of column names, df
OUTPUT -> updated df with dropped columns
------
'''
df.drop(col_names_list, axis=1, inplace=True)
return df
当数据集变大时,需要转换数据类型来节省内存。
def change_dtypes(col_int, col_float, df):
'''
AIM -> Changing dtypes to save memory
INPUT -> List of column names (int, float), df
OUTPUT -> updated df with smaller memory
------
'''
df[col_int] = df[col_int].astype('int32')
df[col_float] = df[col_float].astype('float32')
一些机器学习模型要求变量采用数值格式。这需要先将分类变量转换为数值变量。同时,你也可以保留分类变量,以便进行数据可视化。
def convert_cat2num(df):
# Convert categorical variable to numerical variable
num_encode = {'col_1' : {'YES':1, 'NO':0},
'col_2' : {'WON':1, 'LOSE':0, 'DRAW':0}}
df.replace(num_encode, inplace=True)
如果你要检查每列缺失数据的数量,使用下列代码是最快的方法。可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。
def check_missing_data(df):
# check for any missing data in the df (display in descending order)
return df.isnull().sum().sort_values(ascending=False)
有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。
def remove_col_str(df):
# remove a portion of string in a dataframe column - col_1
df['col_1'].replace('\n', '', regex=True, inplace=True)
# remove all the characters after &# (including &#) for column - col_1
df['col_1'].replace(' &#.*', '', regex=True, inplace=True)
数据混乱的时候,什么情况都有可能发生。字符串开头经常会有一些空格。在删除列中字符串开头的空格时,下面的代码非常有用。
def remove_col_white_space(df):
# remove white space at the beginning of string
df[col] = df[col].str.lstrip()
当你想要有条件地用字符串将两列连接在一起时,这段代码很有帮助。比如,你可以在第一列结尾处设定某些字母,然后用它们与第二列连接在一起。
根据需要,结尾处的字母也可以在连接完成后删除。
def concat_col_str_condition(df):
# concat 2 columns with strings if the last 3 letters of the first column are 'pil'
mask = df['col_1'].str.endswith('pil', na=False)
col_new = df[mask]['col_1'] + df[mask]['col_2']
col_new.replace('pil', ' ', regex=True, inplace=True) # replace the 'pil' with emtpy space
在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。
这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。
def convert_str_datetime(df):
'''
AIM -> Convert datetime(String) to datetime(format we want)
INPUT -> df
OUTPUT -> updated df with new datetime format
------
'''
df.insert(loc=2, column='timestamp', value=pd.to_datetime(df.transdate, format='%Y-%m-%d %H:%M:%S.%f'))
最后,附上原文传送门~
https://towardsdatascience.com/the-simple-yet-practical-data-cleaning-codes-ad27c4ce0a38
— 完 —
加入社群
量子位AI社群开始招募啦,欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“交流群”,获取入群方式;
此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。
进专业群请在量子位公众号(QbitAI)对话界面回复关键字“专业群”,获取入群方式。(专业群审核较严,敬请谅解)
诚挚招聘
量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。
量子位 QbitAI · 头条号签约作者
վ'ᴗ' ի 追踪AI技术和产品新动态
喜欢就点「好看」吧 !