百度开源移动端深度学习框架mobile-deep-learning(MDL)

2017 年 9 月 25 日 机器学习研究会
2017 年 9 月 25 日,百度在 GitHub 开源了移动端深度学习框架 mobile-deep-learning(MDL)的全部代码以及脚本,希望这个项目在社区的带动下能够更好地发展。


写在前面


深度学习技术已经在互联网的诸多方向产生影响,每天科技新闻中关于深度学习和神经网络的讨论越来越多。深度学习技术在近两年飞速发展,各种互联网产品都争相应用深度学习技术,产品对深度学习的引入也将进一步影响人们的生活。随着移动设备的广泛使用,在移动互联网产品应用深度学习和神经网络技术已经成为必然趋势。

与深度学习紧密联系在一起的图像技术同样在业界广泛应用。传统计算机视觉和深度学习的结合使图像技术得以快速发展。

GitHub 地址:

https://github.com/baidu/mobile-deep-learning


移动端深度学习技术应用
百度应用案例


在移动端应用深度学习技术比较典型的就是 CNN(Convolutional Neural Network)技术,即常被人提起的卷积神经网络。mobile-deep-learning(MDL)是一个基于卷积神经网络实现的移动端框架。

MDL 在移动端主要有哪些应用场景呢?比较常见的如分辨出一张图片中的物体是什么,也就是 分类;或者识别出一张图片中的物体在哪、有多大,也就是 主体识别

下面这个 App 叫拾相,可以在 Android 平台的应用宝中找到。它可以自动为用户将照片分类,对于拥有大量照片的用户来讲,这个功能很有吸引力。

另外,在手机百度搜索框右侧可以打开图像搜索,打开图像搜索后的界面效果如下图。当用户在通用垂直类别下开启自动拍开关(图中下方标注)时,手停稳它就会自动找到物体进行框选,并无需拍照直接发起图像搜索。整个过程可以给用户带来流畅的体验,无需用户手动拍照。图片中的框体应用的就是典型的深度学习主体识别技术,使用的就是 mobile-deep-learning(MDL)框架。MDL 目前在手机百度中稳定运行了多个版本,经过数次迭代后可靠性大幅提升。


业界其他案例


互联网行业在移动端应用神经网络的案例已经越来越多。

目前的流派主要有两种,其一是完全在客户端运行神经网络,这种方式的优点显而易见,那就是不需要经过网络,如果能保证运行速度,用户体验会非常流畅。如果能保证移动端高效运行神经网络,可以使用户感觉不到加载过程。使用完全脱离互联网网络在移动端运算神经网络的 App 已经举例,如前述拾相和手机百度中的图像搜索。

其二是另一种,运算神经网络过程依赖互联网网络,客户端只负责 UI 展示。在客户端神经网络落地之前,绝大部分 App 都使用了这种运算在服务端、展示在客户端的方式。这种方式的优点是实现相对容易,开发成本更低。

为了更好理解上述两种神经网络的实现方法,下面展示两个识别植物花卉的例子,分别用到了识花和形色两个 App。这两款 App 都使用了典型分类方法,都可以在 iOS 平台的 App Store 中找到。下图是一张莲花图片,这张图片使用识花和形色两个 App 分类都能得到较好的分类结果。你可以尝试安装这两款 App 并根据使用效果来判断它们分别使用了上述哪一种方法。


 识花


近一年来涌现出很多花卉识别的 App。微软「识花」是微软亚洲研究院推出的一款用于识别花卉的 App,用户可以在拍摄后选择花卉,App 会给出该类花卉的相关信息。精准的花卉分类是其对外宣传的一大亮点。


 形色


这款「形色」App,只需要对准植物 (花、草、树) 拍照,就能快速给出植物的名字,还有不少有趣的植物知识,如这个植物还有什么别名、植物的花语、相关古诗词、植物文化、趣味故事以及养护方法,看完收获不少。


移动端应用深度学习的难点


一直以来由于技术门槛和硬件条件的限制,在移动端应用深度学习的成功案例不多。传统移动端 UI 工程师在编写神经网络代码时,可以查阅到的移动端深度学习资料也很少。另一方面,时下的互联网竞争又颇为激烈,先入咸阳者王,可以率先将深度学习技术在移动端应用起来,就可以更早地把握时代先机。

移动端设备的运算能力相对 PC 端非常弱小。由于移动端的 CPU 要将功耗指标维持在很低的水平,制约了性能指标的提升。在 App 中做神经网络运算会使 CPU 运算量猛增。如何协调好用户功耗指标和性能指标就显得至关重要。

百度图像搜索客户端团队在 2015 年底就开始针对移动端深度学习技术应用进行攻关。最终,挑战性问题被逐一解决,现今相关代码已经在很多 App 上运行,这些 App 有日 PV 亿级的产品,也有创业期的产品。

在移动端应用深度学习技术本已困难重重,而在手机百度这种量级的产品上应用,更是要面对各种机型和硬件、手机百度的指标要求。如何使神经网络技术稳定高效运转是最大的考验。拆解问题就是移动端团队面对的首要问题。我们简单总结后发现移动端与服务器端进行对比更容易呈现问题和难点,继而在服务器端和客户端做了以下深度学习技术应用对比。

难点 与服务器端对比
内存 内存:服务器端弱限制 - 移动端内存有限
耗电量 耗电量:服务器端不限制 - 移动端严格限制
依赖库体积 依赖库体积:服务器端不限制 - 移动端强限制
模型体积 模型大小:服务器端常规模型体积 200M 起 - 移动端不宜超过 10M
性能 性能:服务器端强大 GPU BOX - 移动端 CPU 和 GPU

在开发过程中,团队逐步解决掉以上困难,形成了现在的 MDL 深度学习框架。为了让更多移动端工程师能够快速用轮子、专注业务,百度开源了全部相关代码,社区也欢迎任何人加入到造轮子的开发过程中来。


MDL 框架设计
设计思路


作为一款移动端深度学习框架,我们充分考虑到移动应用自身及运行环境的特点,在速度、体积、资源占用率等方面提出了严格的要求,因为其中任何一项指标对用户体验都有重大影响。

同时,可扩展性、鲁棒性、兼容性也是我们设计之初就考虑到了的。为了保证框架的可扩展性,我们对 layer 层进行了抽象,方便框架使用者根据模型的需要,自定义实现特定类型的层,我们期望 MDL 通过添加不同类型的层实现对更多网络模型的支持,而不需要改动其他位置的代码;为了保证框架的鲁棒性,MDL 通过反射机制,将 C++ 底层异常抛到应用层,应用层通过捕获异常对异常进行相应处理,如通过日志收集异常信息、保证软件可持续优化等;目前行业内各种深度学习训练框架种类繁多,而 MDL 不支持模型训练能力,为了保证框架的兼容性,我们提供 Caffe 模型转 MDL 的工具脚本,使用者通过一行命令就可以完成模型的转换及量化过程,后续我们会陆续支持 PaddlePaddle、TensorFlow 等模型转 MDL,兼容更多种类的模型。


总体架构


MDL 框架的总体架构设计图如下:



MDL 框架主要包括模型转换模块(MDL Converter)、模型加载模块(Loader)、网络管理模块(Net)、矩阵运算模块(Gemmers)及供 Android 端调用的 JNI 接口层(JNI Interfaces)。其中,模型转换模块主要负责将 Caffe 模型转为 MDL 模型,同时支持将 32bit 浮点型参数量化为 8bit 参数,从而极大地压缩模型体积;模型加载模块主要完成模型的反量化及加载校验、网络注册等过程,网络管理模块主要负责网络中各层 Layer 的初始化及管理工作;MDL 提供了供 Android 端调用的 JNI 接口层,开发者可以通过调用 JNI 接口轻松完成加载及预测过程。


MDL 定位简单可用


MDL 开源项目在实施之初就已经有了清晰定位。在设备繁杂且性能较低的移动端平台技术研发过程中,能够为新颖的深度学习技术找到合适场景并应用到自己的产品中是非常吸引人的。但如果让每个移动端工程师在应用深度学习过程中都要重新写一次全部神经网络的实现,会增加较大成本。MDL 的定位是简单地使用和部署神经网络,如果使用基本功能则不需要进行过多配置和修改,甚至连机器学习库的编译过程都不需要,只需要关注具体业务实现、如何使用即可。



转自:InfoQ

完整内容请点击“阅读原文”

登录查看更多
1

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
206+阅读 · 2020年1月13日
【新书】傻瓜式入门深度学习,371页pdf
专知会员服务
188+阅读 · 2019年12月28日
专知会员服务
116+阅读 · 2019年12月24日
深度学习开发必备开源框架
九章算法
12+阅读 · 2018年5月30日
机器学习者必知的 5 种深度学习框架
深度学习世界
7+阅读 · 2018年5月3日
基于TensorFlow的深度学习实战
七月在线实验室
9+阅读 · 2018年4月25日
大牛的《深度学习》笔记,Deep Learning速成教程
极市平台
18+阅读 · 2018年4月10日
给初学者的深度学习简介
36大数据
3+阅读 · 2017年10月19日
【深度学习】给初学者的深度学习简介
产业智能官
8+阅读 · 2017年10月17日
【机器学习】推荐13个机器学习框架
产业智能官
8+阅读 · 2017年9月10日
大数据分析研究组开源Easy Machine Learning系统
中国科学院网络数据重点实验室
16+阅读 · 2017年6月13日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
6+阅读 · 2018年1月11日
VIP会员
相关资讯
深度学习开发必备开源框架
九章算法
12+阅读 · 2018年5月30日
机器学习者必知的 5 种深度学习框架
深度学习世界
7+阅读 · 2018年5月3日
基于TensorFlow的深度学习实战
七月在线实验室
9+阅读 · 2018年4月25日
大牛的《深度学习》笔记,Deep Learning速成教程
极市平台
18+阅读 · 2018年4月10日
给初学者的深度学习简介
36大数据
3+阅读 · 2017年10月19日
【深度学习】给初学者的深度学习简介
产业智能官
8+阅读 · 2017年10月17日
【机器学习】推荐13个机器学习框架
产业智能官
8+阅读 · 2017年9月10日
大数据分析研究组开源Easy Machine Learning系统
中国科学院网络数据重点实验室
16+阅读 · 2017年6月13日
相关论文
Arxiv
7+阅读 · 2018年12月26日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
6+阅读 · 2018年1月11日
Top
微信扫码咨询专知VIP会员