表格理解是指通过计算机对广泛存在于互联网、垂直领域的表格进行自动识别、解析和应用的过程。表格可大致分为关系型表格和非关系型表格。前者类似关系数据库表格,具有结构固定、机器易解析等特点,其研究历史由来已久。后者通常布局多变,语法灵活,具有更明显的语言特性,这也导致计算机在解析和应用非关系型表格时面临着极大挑战。非关系型表格理解是自然语言和计算机视觉多模态交叉的重要新兴领域之一。随着近年来深度学习技术的普及应用,非关系型表格在表格识别、语义分析、创新应用几个方向得到了长足发展。该文介绍了非关系型表格的结构特点,阐述了其在研究过程中面临的独特挑战,然后从表格识别、语义分析、创新应用三个研究方向简要介绍了近年来此领域的发展,归纳了相关数据集,最后总结了目前非关系型表格理解领域亟需解决的问题,展望了未来研究方向。