摘要: 多智能体强化学习作为博弈论、控制论和多智能体学习的交叉研究领域, 是多智能体系统研究中的前沿方向, 赋予了智能体在动态多维的复杂环境中通过交互和决策完成多样化任务的能力. 多智能体强化学习正在向应用对象开放化、应用问题具身化、应用场景复杂化的方向发展, 并逐渐成为解决现实世界中博弈决策问题的最有效工具. 本文对基于多智能体强化学习的博弈进行了系统性综述. 首先, 介绍了多智能体强化学习的基本理论, 梳理了多智能体强化学习算法与基线测试环境的发展进程. 其次, 针对合作、对抗以及混合三种多智能体强化学习任务, 从提高智能体合作效率、提升智能体对抗能力的维度来介绍多智能体强化学习的最新进展, 并结合实际应用探讨了混合博弈的前沿研究方向. 最后, 对多智能体强化学习的应用前景和发展趋势进行了总结与展望. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c240478