Over the last decade, the bandwidth expansion and MU-MIMO spectral efficiency have promised to increase data throughput by allowing concurrent communication between one Access Point and multiple users. However, we are still a long way from enjoying such MU-MIMO MAC protocol improvements for bandwidth hungry applications such as video streaming in practical WiFi network settings due to heterogeneous channel conditions and devices, unreliable transmissions, and lack of useful feedback exchange among the lower and upper layers' requirements. This paper introduces MuViS, a novel dual-phase optimization framework that proposes a Quality of Experience (QoE) aware MU-MIMO optimization for multi-user video streaming over IEEE 802.11ac. MuViS first employs reinforcement learning to optimize the MU-MIMO user group and mode selection for users based on their PHY/MAC layer characteristics. The video bitrate is then optimized based on the user's mode (Multi-User (MU) or Single-User (SU)). We present our design and its evaluation on smartphones and laptops using 802.11ac WiFi. Our experimental results in various indoor environments and configurations show a scalable framework that can support a large number of users with streaming at high video rates and satisfying QoE requirements.


翻译:在过去的十年中,宽频扩大和MU-MIMO光谱效率承诺通过允许一个接入点和多个用户之间同时进行通信来增加数据输送量,然而,我们仍然远远不能享受MU-MIMOMMAC协议的改进,用于在实用的WiFi网络设置中,在实用的WiFi网络设置中进行视频流,例如,由于不同的频道条件和装置、不可靠的传输以及低层和上层要求之间缺乏有用的反馈交流,在实际的WiFi网络设置中进行视频流流流,如视频流流,从而实现宽度的宽度,这是一个新的双阶段优化框架,它提出了在IEEE 802.11ac的多用户视频流中认识MU-MIMO优化。MUS首先利用强化学习来优化MU-MIMO用户群和用户基于其PHY/MAC层特性的模式选择。然后根据用户模式(MU(MU)或单层用户(SU)进行优化。我们用802.11A WiFI对智能手机和笔记本机质量进行设计和评价的质量质量。我们在各种室内环境和高流用户的实验结果中可以显示一个高流流要求的精确度框架。

0
下载
关闭预览

相关内容

专知会员服务
109+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月28日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员