This paper presents the cognitive module of the cognitive architecture for artificial intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to test algorithms from different classes. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging-technology for module communication is used to evaluate a real-world use case.
翻译:本文介绍了网络物理生产系统中人工智能认知结构的认知模块。这一架构的目标是减少CPPS中人工智能算法的实施努力。声明用户目标和所提供的算法知识基础允许动态管道管弦化和配置。一个大数据平台(BDP)即时化管道并监测CPPS的性能,以便通过认知模块进行进一步评估。因此,认知模块能够为不同用途情况下的流程管道选择可行和稳健的配置。此外,它自动调整基于模型质量和资源消耗的模型和算法。认知模块还即时化了其他管道以测试不同类别的算法。CAAI依靠明确界定的界面,以便能够整合其他模块并减少实施努力。最后,基于Docker、Kubernetes和Kafka的单个模块的虚拟化和管弦化以及模块通信信息技术的实施被用于评价真实世界使用案例。