Due to researchers'aim to study personalized recommendations for different business fields, the summary of recommendation methods in specific fields is of practical significance. News recommendation systems were the earliest research field regarding recommendation systems, and were also the earliest recommendation field to apply the collaborative filtering method. In addition, news is real-time and rich in content, which makes news recommendation methods more challenging than in other fields. Thus, this paper summarizes the research progress regarding news recommendation methods. From 2018 to 2020, developed news recommendation methods were mainly deep learning-based, attention-based, and knowledge graphs-based. As of 2020, there are many news recommendation methods that combine attention mechanisms and knowledge graphs. However, these methods were all developed based on basic methods (the collaborative filtering method, the content-based recommendation method, and a mixed recommendation method combining the two). In order to allow researchers to have a detailed understanding of the development process of news recommendation methods, the news recommendation methods surveyed in this paper, which cover nearly 10 years, are divided into three categories according to the abovementioned basic methods. Firstly, the paper introduces the basic ideas of each category of methods and then summarizes the recommendation methods that are combined with other methods based on each category of methods and according to the time sequence of research results. Finally, this paper also summarizes the challenges confronting news recommendation systems.


翻译:由于研究人员要研究针对不同商业领域的个性化建议,特定领域的建议方法摘要具有实际意义; 新闻建议系统是建议系统最早的研究领域,也是应用协作过滤方法的最早建议领域; 此外,新闻是实时的,内容丰富,使新闻建议方法比其他领域更具挑战性; 因此,本文件总结了有关新闻建议方法的研究进展; 从2018年至2020年,开发的新闻建议方法主要是深层学习、关注和知识图表; 截至2020年,有许多新闻建议方法将关注机制和知识图表结合起来; 然而,这些方法都是根据基本方法(协作过滤方法、内容建议方法和将两者相结合的混合建议方法)制定的; 为了让研究人员详细了解新闻建议方法的开发过程,本文件所调查的新闻建议方法(涵盖近10年)按照上述基本方法分为三类。 首先,文件介绍了每种方法的基本想法,然后总结了建议方法,这些方法都是根据基本方法(协作过滤方法、内容为基础建议方法的方法,以及结合了两种方法的混合方法),最后,根据每一类别,将报告所调查的新闻建议方法分为三个类别。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Arxiv
0+阅读 · 2021年4月30日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Top
微信扫码咨询专知VIP会员