Most computational accounts of cognitive maps assume that stability is achieved primarily through sensory anchoring, with self-motion contributing to incremental positional updates only. However, biological spatial representations often remain coherent even when sensory cues degrade or conflict, suggesting that self-motion may play a deeper organizational role. Here, we show that self-motion can act as a structural prior that actively organizes the geometry of learned cognitive maps. We embed a path-integration-based motion prior in a predictive-coding framework, implemented using a capacity-efficient, brain-inspired recurrent mechanism combining spiking dynamics, analog modulation and adaptive thresholds. Across highly aliased, dynamically changing and naturalistic environments, this structural prior consistently stabilizes map formation, improving local topological fidelity, global positional accuracy and next-step prediction under sensory ambiguity. Mechanistic analyses reveal that the motion prior itself encodes geometrically precise trajectories under tight constraints of internal states and generalizes zero-shot to unseen environments, outperforming simpler motion-based constraints. Finally, deployment on a quadrupedal robot demonstrates that motion-derived structural priors enhance online landmark-based navigation under real-world sensory variability. Together, these results reframe self-motion as an organizing scaffold for coherent spatial representations, showing how brain-inspired principles can systematically strengthen spatial intelligence in embodied artificial agents.


翻译:大多数关于认知地图的计算理论认为,稳定性主要通过感觉锚定实现,而自运动仅用于增量式位置更新。然而,即使在感觉线索退化或冲突时,生物的空间表征也常保持连贯性,这表明自运动可能发挥着更深层次的组织作用。本文证明,自运动可以作为一种结构先验,主动组织已习得认知地图的几何结构。我们将一种基于路径积分的运动先验嵌入到预测编码框架中,并通过一种结合脉冲动力学、模拟调制和自适应阈值的容量高效、受大脑启发的循环机制实现。在高度混叠、动态变化及自然主义环境中,该结构先验能持续稳定地图形成,在感觉模糊条件下提升局部拓扑保真度、全局位置精度及下一步预测能力。机制分析表明,该运动先验本身在内部状态的严格约束下编码了几何精确的轨迹,并能零样本泛化至未见环境,其性能优于更简单的基于运动的约束。最后,在四足机器人上的部署实验表明,运动衍生的结构先验能在真实世界感觉多变的条件下,增强基于地标的在线导航能力。综上,这些结果将自运动重新定义为连贯空间表征的组织支架,展示了受大脑启发的原理如何系统性地增强具身人工代理的空间智能。

0
下载
关闭预览

相关内容

【KDD2025】时空图神经网络的动态定位
专知会员服务
16+阅读 · 1月12日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
41+阅读 · 2020年11月22日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员