We show that certain diagrams of $\infty$-logoses are reconstructed in homotopy type theory extended with some lex, accessible modalities, which enables us to use plain homotopy type theory to reason about not only a single $\infty$-logos but also a diagram of $\infty$-logoses. This also provides a higher dimensional version of Sterling's synthetic Tait computability -- a type theory for higher dimensional logical relations.
翻译:我们证明,某些 $\infty$-逻辑斯的图示可以在同伦类型理论中通过扩展一些左正合、可及模态来重构,这使得我们能够使用纯粹的同伦类型理论来推理不仅是单个 $\infty$-逻辑斯,还包括 $\infty$-逻辑斯的图示。这也提供了 Sterling 的合成 Tait 可计算性的高维版本——一种用于高维逻辑关系的类型理论。