One of the most important studies in finance is to find out whether stock returns could be predicted. This research aims to create a new multivariate model, which includes dividend yield, earnings-to-price ratio, book-to-market ratio as well as consumption-wealth ratio as explanatory variables, for future stock returns predictions. The new multivariate model will be assessed for its forecasting performance using empirical analysis. The empirical analysis is performed on S&P500 quarterly data from Quarter 1, 1952 to Quarter 4, 2019 as well as S&P500 monthly data from Month 12, 1920 to Month 12, 2019. Results have shown this new multivariate model has predictability for future stock returns. When compared to other benchmark models, the new multivariate model performs the best in terms of the Root Mean Squared Error (RMSE) most of the time.


翻译:金融领域最重要的一项研究是了解能否预测股票回报率。这项研究旨在创建一个新的多变模式,其中包括作为未来股票回报预测的解释变量的股利收益率、收入与价格比率、书与市场比率以及消费与财富比率。新的多变模式将使用经验分析评估其预测性能。根据从1952年1月1季度到2019年4季度的S & P500季度数据以及从1920年1920月12月到2019年12月12月的S&P500月月数据进行了实证分析。结果显示,这一新的多变模式对未来股票回报具有可预测性。与其他基准模型相比,新的多变模式在大部分时间里都表现了原始平方错误(RMSE)的最佳表现。

0
下载
关闭预览

相关内容

专知会员服务
105+阅读 · 2021年8月23日
最新《时序数据分析》书稿,512页pdf
专知会员服务
113+阅读 · 2020年12月25日
应用机器学习书稿,361页pdf
专知会员服务
59+阅读 · 2020年11月24日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
专知会员服务
62+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
已删除
将门创投
7+阅读 · 2018年4月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
贝叶斯网络入门
论智
15+阅读 · 2017年11月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
6+阅读 · 2019年3月19日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
专知会员服务
105+阅读 · 2021年8月23日
最新《时序数据分析》书稿,512页pdf
专知会员服务
113+阅读 · 2020年12月25日
应用机器学习书稿,361页pdf
专知会员服务
59+阅读 · 2020年11月24日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
专知会员服务
62+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
已删除
将门创投
7+阅读 · 2018年4月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
贝叶斯网络入门
论智
15+阅读 · 2017年11月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员