We study mechanism design in environments where agents have private preferences and private information about a common payoff-relevant state. In such settings with multi-dimensional types, standard mechanisms fail to implement efficient allocations. We address this limitation by proposing data-driven mechanisms that condition transfers on additional post-allocation information, modeled as an estimator of the payoff-relevant state. Our mechanisms extend the classic Vickrey-Clarke-Groves framework. We show they achieve exact implementation in posterior equilibrium when the state is fully revealed or utilities are affine in an unbiased estimator. With a consistent estimator, they achieve approximate implementation that converges to exact implementation as the estimator converges, and we provide bounds on the convergence rate. We demonstrate applications to digital advertising auctions and AI shopping assistants, where user engagement naturally reveals relevant information, and to procurement auctions with consumer spot markets, where additional information arises from a pricing game played by the same agents.
翻译:我们研究在智能体拥有私人偏好和关于共同收益相关状态的私人信息的环境中的机制设计。在这类具有多维类型的设定中,标准机制无法实现有效配置。我们通过提出数据驱动的机制来解决这一局限性,这类机制将转移支付条件建立在额外的配置后信息之上,该信息被建模为收益相关状态的一个估计量。我们的机制扩展了经典的Vickrey-Clarke-Groves框架。我们证明,当状态被完全揭示或效用在一个无偏估计量中是仿射函数时,它们能在后验均衡中实现精确实施。当使用一致估计量时,它们能实现近似实施,并随着估计量收敛而收敛于精确实施,同时我们给出了收敛速度的界限。我们展示了在数字广告拍卖和AI购物助手中的应用,其中用户参与度自然地揭示了相关信息;以及在具有消费者现货市场的采购拍卖中的应用,其中额外信息产生于由相同智能体参与的定价博弈。