Web 3.0 enables user-generated contents and user-selected authorities. With decentralized wireless edge computing architectures, Web 3.0 allows users to read, write, and own contents. A core technology that enables Web 3.0 goals is blockchain, which provides security services by recording content in a decentralized and transparent manner. However, the explosion of on-chain recorded contents and the fast-growing number of users cause increasingly unaffordable computing and storage resource consumption. A promising paradigm is to analyze the semantic information of contents that can convey precisely the desired meanings without consuming many resources. In this article, we propose a unified blockchain-semantic ecosystems framework for wireless edge intelligence-enabled Web 3.0. Our framework consists of six key components to exchange semantic demands. We then introduce an Oracle-based proof of semantic mechanism to implement on-chain and off-chain interactions of Web 3.0 ecosystems on semantic verification algorithms while maintaining service security. An adaptive Deep Reinforcement Learning-based sharding mechanism on Oracle is designed to improve interaction efficiency, which can facilitate Web 3.0 ecosystems to deal with varied semantic demands. Finally, a case study is presented to show that the proposed framework can dynamically adjust Oracle settings according to varied semantic demands.


翻译:Web 3.0 使用户生成的内容和用户选择的权限得以实现。Web 3.0 使用户能够阅读、写写和拥有内容。一个核心技术,使Web 3.0 目标成为链条,通过分散和透明的方式记录内容提供安保服务。然而,链式记录内容的爆炸和用户数量的快速增长导致日益负担不起的计算和存储资源消耗。一个有希望的模式是分析内容的语义信息,这种内容可以准确传达所期望的含义,而无需消耗很多资源。在文章中,我们提议一个无线边缘智能上网3.0 功能的无线端端链式结构生态系统框架。我们的框架由六个关键组成部分组成,以交换语义需求。我们随后推出一个基于Oracle的语义机制验证,以便在维护服务安全的同时实施网络3.0 语义核查算法的链式和离链式互动。Oracle上一个适应性深加固学习的刻板机制是为了提高互动效率,这可以促进网络3.0 生态系统处理各种语义要求。最后,我们提出一个动态框架要求。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年8月16日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
33+阅读 · 2021年12月31日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员