In this technical report, we explore the use of homomorphic encryption (HE) in the context of training and predicting with deep learning (DL) models to deliver strict \textit{Privacy by Design} services, and to enforce a zero-trust model of data governance. First, we show how HE can be used to make predictions over medical images while preventing unauthorized secondary use of data, and detail our results on a disease classification task with OCT images. Then, we demonstrate that HE can be used to secure the training of DL models through federated learning, and report some experiments using 3D chest CT-Scans for a nodule detection task.
翻译:在本技术报告中,我们探讨了在培训和预测深层学习(DL)模型的背景下使用同质加密(HE)的问题,以便提供严格的设计服务提供\textit{Privacy,并强制执行数据治理的零信任模式。首先,我们展示了如何利用他对医疗图像作出预测,同时防止未经授权的二次使用数据,并详细说明了我们利用OCT图像进行疾病分类工作的结果。然后,我们证明可以使用HE通过联合学习确保DL模型的培训,并报告了使用3D胸部CT扫描进行结核探测的一些实验。