The rise in adoption of cryptoassets has brought many new and inexperienced investors in the cryptocurrency space. These investors can be disproportionally influenced by information they receive online, and particularly from social media. This paper presents a dataset of crypto-related bounty events and the users that participate in them. These events coordinate social media campaigns to create artificial "hype" around a crypto project in order to influence the price of its token. The dataset consists of information about 15.8K cross-media bounty events, 185K participants, 10M forum comments and 82M social media URLs collected from the Bounties(Altcoins) subforum of the BitcoinTalk online forum from May 2014 to December 2022. We describe the data collection and the data processing methods employed and we present a basic characterization of the dataset. Furthermore, we discuss potential research opportunities afforded by the dataset across many disciplines and we highlight potential novel insights into how the cryptocurrency industry operates and how it interacts with its audience.


翻译:加密资产的普及使得许多新手和经验不足的投资者涌入加密货币领域。这些投资者受到他们在网上获得的信息(尤其是社交媒体上)的不成比例的影响。本文介绍了一个有关加密货币赏金活动及参与者的数据集。这些活动通过协调社交媒体宣传活动,制造人工“炒作”以影响加密项目代币价格。该数据集由从2014年5月至2022年12月的BitcoinTalk在线论坛的Bounties(Altcoins)子论坛中收集的有关15.8K条跨媒体赏金活动、185K名参与者、10M条论坛评论和82M个社交媒体URL的信息组成。我们介绍了数据集的收集和处理方法,并对数据集进行了基本的特征描述。此外,我们讨论了该数据集在许多领域中提供的潜在研究机会,并强调了可能的新见解,包括加密货币行业的运作方式和它与受众的互动。

0
下载
关闭预览

相关内容

【元宇宙】“The State Of The Metaverse”26页报告
专知会员服务
44+阅读 · 2022年5月25日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
61+阅读 · 2020年7月30日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
12+阅读 · 2018年1月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员