String Edit Distance is a more-than-classical problem whose behavior in the dynamic setting, where the strings are updated over time, is well understood. A single character substitution, insertion, or deletion can be handled in $\tilde{\mathcal{O}}(n \cdot \min(\sqrt{n},w))$ time [Charalampopoulos, Kociumaka, Mozes, CPM 2020], where $w$ is the maximum operation weight. This bound is optimal [Cassis, Kociumaka, Wellnitz, FOCS 2023] and provides a substantial improvement over the static $\mathcal{O}(n^2)$ algorithm when few characters of the input string are updated. In contrast, for inherently related problems such as Tree Edit Distance, Dyck Edit Distance, and RNA Folding, it has remained unknown whether it is possible to devise dynamic algorithms with an advantage over the static algorithm. In this paper, we resolve this question by showing that (weighted) Tree Edit Distance, Dyck Edit Distance, and RNA Folding admit no dynamic speedup: under well-known fine-grained assumptions we show that the best possible algorithm recomputes the solution from scratch after each update. Furthermore, we prove a quadratic per-update lower bound for unweighted Tree Edit Distance under the $k$-Clique Conjecture. This provides the first separation between dynamic unweighted String Edit Distance and unweighted Tree Edit Distance, problems whose relative difficulty in the static setting is still open.
翻译:字符串编辑距离是一个经典问题,其在动态设置下的行为已得到充分理解,其中字符串随时间更新。单个字符的替换、插入或删除操作可在 $\tilde{\mathcal{O}}(n \cdot \min(\sqrt{n},w))$ 时间内处理 [Charalampopoulos, Kociumaka, Mozes, CPM 2020],其中 $w$ 为最大操作权重。该界限是最优的 [Cassis, Kociumaka, Wellnitz, FOCS 2023],并且在输入字符串中仅少数字符被更新时,相较于静态 $\mathcal{O}(n^2)$ 算法有显著改进。相比之下,对于本质上相关的问题,如树编辑距离、Dyck编辑距离和RNA折叠,是否存在能够超越静态算法的动态算法一直未知。本文通过证明(加权)树编辑距离、Dyck编辑距离和RNA折叠不存在动态加速来解决此问题:基于著名的细粒度假设,我们表明最佳可能算法在每次更新后需从头重新计算解。此外,我们在 $k$-Clique猜想下证明了未加权树编辑距离的每更新二次下界。这首次在动态未加权字符串编辑距离与未加权树编辑距离之间建立了分离,而这两个问题在静态设置中的相对难度仍悬而未决。