We consider the problem of proactive handoff and beam selection in Terahertz (THz) drone communication networks assisted with reconfigurable intelligent surfaces (RIS). Drones have emerged as critical assets for next-generation wireless networks to provide seamless connectivity and extend the coverage, and can largely benefit from operating in the THz band to achieve high data rates (such as considered for 6G). However, THz communications are highly susceptible to channel impairments and blockage effects that become extra challenging when accounting for drone mobility. RISs offer flexibility to extend coverage by adapting to channel dynamics. To integrate RISs into THz drone communications, we propose a novel deep learning solution based on a recurrent neural network, namely the Gated Recurrent Unit (GRU), that proactively predicts the serving base station/RIS and the serving beam for each drone based on the prior observations of drone location/beam trajectories. This solution has the potential to extend the coverage of drones and enhance the reliability of next-generation wireless communications. Predicting future beams based on the drone beam/position trajectory significantly reduces the beam training overhead and its associated latency, and thus emerges as a viable solution to serve time-critical applications. Numerical results based on realistic 3D ray-tracing simulations show that the proposed deep learning solution is promising for future RIS-assisted THz networks by achieving near-optimal proactive hand-off performance and more than 90% accuracy for beam prediction.


翻译:我们认为Terahertz(Thz)无人机通信网络的主动搭接和梁选择问题是Terahertz(Thz)无人机通信网络的主动搭接和光束选择问题。 无人机已成为下一代无线网络的关键资产,以提供无缝连通和扩大覆盖面,并在很大程度上受益于在Thz波段运行,以达到高数据率(例如考虑6G)。然而,Thz通信极易受到在计算无人机机动性时会变得格外挑战的频道损坏和阻塞效应的影响。 RIS提供灵活性,通过适应频道动态来扩大覆盖面。为了将RIS纳入Thz无人机通信,我们提议基于经常性神经网络,即Gated 经常股(GRU)的新的深度学习解决方案。 该解决方案积极主动地预测基地站/RIS的运行率,并根据对无人机位置/Beamtrajectors的观测结果,通过对未来无线无线通信的可靠性加以预测,根据无人机定位/定位轨迹轨迹轨轨迹将大大降低近距离的轨道,因此,通过模拟的模拟的模拟解决方案将展示。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
235+阅读 · 2019年10月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员