We develop a Random Forest model to estimate the species distribution of Asian elephants in India and study the inter and intra-annual spatiotemporal variability of habitats suitable for them. Climatic, topographic variables and satellite-derived Land Use/Land Cover (LULC), Net Primary Productivity (NPP), Leaf Area Index (LAI), and Normalized Difference Vegetation Index (NDVI) are used as predictors, and the species sighting data of Asian elephants from Global Biodiversity Information Reserve is used to develop the Random Forest model. A careful hyper-parameter tuning and training-validation-testing cycle are completed to identify the significant predictors and develop a final model that gives precision and recall of 0.78 and 0.77. The model is applied to estimate the spatial and temporal variability of suitable habitats. We observe that seasonal reduction in the suitable habitat may explain the migration patterns of Asian elephants and the increasing human-elephant conflict. Further, the total available suitable habitat area is observed to have reduced, which exacerbates the problem. This machine learning model is intended to serve as an input to the Agent-Based Model that we are building as part of our Artificial Intelligence-driven decision support tool to reduce human-wildlife conflict.
翻译:我们开发了随机森林模型,以估计印度亚洲大象的物种分布,并研究适合这些大象的生境的年间和年内地际多变性。气候、地形变量和卫星产生的土地利用/土地覆盖物(LULC)、净初级生产力(NPP)、Leaf地区指数(LAI)和普通化差异植被指数(NDVI)被用作预测数据,全球生物多样性信息储备中亚洲大象的物种观察数据被用来开发随机森林模型。一个仔细的超参数调整和培训 -- -- 验证 -- -- 测试周期已经完成,以确定重要的预测物和最后模型,精确和回顾0.78和0.77。该模型用于估计适当生境的时空变化性。我们认为,适当生境的季节性减少可以解释亚洲大象的移徙模式以及人类-象冲突日益加剧。此外,观察到现有的全部适当生境区域已经减少,使问题更加严重。这个机器学习模型旨在作为我们正在构建的代理数据库的投入,作为人类人工智能决策工具的一部分,减少人类生命。