Although Convolutional Neural Networks (CNNs) are widely used, their translation invariance (ability to deal with translated inputs) is still subject to some controversy. We explore this question using translation-sensitivity maps to quantify how sensitive a standard CNN is to a translated input. We propose the use of Cosine Similarity as sensitivity metric over Euclidean Distance, and discuss the importance of restricting the dimensionality of either of these metrics when comparing architectures. Our main focus is to investigate the effect of different architectural components of a standard CNN on that network's sensitivity to translation. By varying convolutional kernel sizes and amounts of zero padding, we control the size of the feature maps produced, allowing us to quantify the extent to which these elements influence translation invariance. We also measure translation invariance at different locations within the CNN to determine the extent to which convolutional and fully connected layers, respectively, contribute to the translation invariance of a CNN as a whole. Our analysis indicates that both convolutional kernel size and feature map size have a systematic influence on translation invariance. We also see that convolutional layers contribute less than expected to translation invariance, when not specifically forced to do so.
翻译:虽然广泛使用进化神经网络(CNNs),但其翻译差异(处理翻译投入的能力)仍有争议。我们利用翻译敏感度地图来探讨这一问题,以量化标准CNN对翻译投入的敏感度。我们提议使用Cosine相似度作为Euclidean距离的敏感度度度度度度度度度,并讨论在比较结构时限制这两个指标中任何一个指标的维度的重要性。我们的主要重点是调查标准CNN的建筑组成部分对该网络翻译敏感度的不同结构组成部分的影响。我们的分析表明,通过不同的螺旋内核大小和零倾斜量,我们控制所制作的地貌地图的大小,使我们能够量化这些要素对翻译变化的影响程度。我们还测量CNN内部不同地点的翻译差异度,以便分别确定进化和完全连接层在多大程度上有助于CNN整体的翻译。我们的分析表明,共变内核内核规模和地貌大小对翻译的系统影响。我们还发现,在具体而言,变动层对变异性方面的贡献比预期要小。