Rank-based linkage is a new tool for summarizing a collection $S$ of objects according to their relationships. These objects are not mapped to vectors, and ``similarity'' between objects need be neither numerical nor symmetrical. All an object needs to do is rank nearby objects by similarity to itself, using a Comparator which is transitive, but need not be consistent with any metric on the whole set. Call this a ranking system on $S$. Rank-based linkage is applied to the $K$-nearest neighbor digraph derived from a ranking system. Computations occur on a 2-dimensional abstract oriented simplicial complex whose faces are among the points, edges, and triangles of the line graph of the undirected $K$-nearest neighbor graph on $S$. In $|S| K^2$ steps it builds an edge-weighted linkage graph $(S, \mathcal{L}, \sigma)$ where $\sigma(\{x, y\})$ is called the in-sway between objects $x$ and $y$. Take $\mathcal{L}_t$ to be the links whose in-sway is at least $t$, and partition $S$ into components of the graph $(S, \mathcal{L}_t)$, for varying $t$. Rank-based linkage is a functor from a category of out-ordered digraphs to a category of partitioned sets, with the practical consequence that augmenting the set of objects in a rank-respectful way gives a fresh clustering which does not ``rip apart`` the previous one. The same holds for single linkage clustering in the metric space context, but not for typical optimization-based methods. Open combinatorial problems are presented in the last section.


翻译:基于排名的链接是一种根据对象之间的关系对集合进行总结的新工具。这些对象没有被映射为向量,它们之间的“相似性”不需要是数值的或对称的。对象只需使用 Comparator 对自身附近的对象进行相似性排序,其中 Comparator 是可传递的,但不一定与整个集合上的任何度量一致。将其称为 $S$ 上的排名系统。基于排名的链接应用于从排名系统派生的 $K$-最近邻有向图。计算发生在一个二维的抽象 orientated simplicial 复合体上,其面在 $S$ 的线图中的点、边和三角形之间。在 $|S|K^2$ 步骤中,它构建了一个加权链接图 $(S,\mathcal{L},\sigma)$,其中 $\sigma(\{x, y\})$ 被称为对象 $x$ 和 $y$ 之间的 in-sway。将 $\mathcal{L}_t$ 视为 in-sway 至少为 $t$ 的链接,并将 $S$ 划分为 $(S,\mathcal{L}_t)$ 的图分量,针对变化的 $t$。基于排名的链接是从有向图的一类到分割集合的一个函数子,它的实际结果是以排名原则为基础进行一次集合增量,可以得到一个新的聚类,不会“撕裂”前一个聚类。同样适用于度量空间上的单连接聚类,但对于典型的基于优化的方法则不是这样。最后一节介绍了开放的组合问题。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员