As super-resolution (SR) techniques introduce unique distortions that fundamentally differ from those caused by traditional degradation processes (e.g., compression), there is an increasing demand for specialized video quality assessment (VQA) methods tailored to SR-generated content. One critical factor affecting perceived quality is temporal inconsistency, which refers to irregularities between consecutive frames. However, existing VQA approaches rarely quantify this phenomenon or explicitly investigate its relationship with human perception. Moreover, SR videos exhibit amplified inconsistency levels as a result of enhancement processes. In this paper, we propose \textit{Temporal Inconsistency Guidance for Super-resolution Video Quality Assessment (TIG-SVQA)} that underscores the critical role of temporal inconsistency in guiding the quality assessment of SR videos. We first design a perception-oriented approach to quantify frame-wise temporal inconsistency. Based on this, we introduce the Inconsistency Highlighted Spatial Module, which localizes inconsistent regions at both coarse and fine scales. Inspired by the human visual system, we further develop an Inconsistency Guided Temporal Module that performs progressive temporal feature aggregation: (1) a consistency-aware fusion stage in which a visual memory capacity block adaptively determines the information load of each temporal segment based on inconsistency levels, and (2) an informative filtering stage for emphasizing quality-related features. Extensive experiments on both single-frame and multi-frame SR video scenarios demonstrate that our method significantly outperforms state-of-the-art VQA approaches. The code is publicly available at https://github.com/Lighting-YXLI/TIG-SVQA-main.


翻译:随着超分辨率(SR)技术引入与传统退化过程(如压缩)截然不同的独特失真,针对SR生成内容的专用视频质量评估(VQA)方法需求日益增长。影响感知质量的一个关键因素是时间不一致性,即连续帧之间的不规则性。然而,现有VQA方法很少量化这一现象或明确探究其与人类感知的关系。此外,SR视频因增强过程而表现出放大的不一致性水平。本文提出《面向超分辨率视频质量评估的时间不一致性引导方法(TIG-SVQA)》,强调时间不一致性在指导SR视频质量评估中的关键作用。我们首先设计了一种面向感知的逐帧时间不一致性量化方法。基于此,我们引入了不一致性突出空间模块,可在粗粒度与细粒度上定位不一致区域。受人类视觉系统启发,我们进一步开发了不一致性引导时间模块,执行渐进式时间特征聚合:(1)一致性感知融合阶段,其中视觉记忆容量模块根据不一致性水平自适应确定每个时间片段的信息负载;(2)信息过滤阶段,用于强化与质量相关的特征。在单帧与多帧SR视频场景上的大量实验表明,我们的方法显著优于当前最先进的VQA方法。代码已公开于https://github.com/Lighting-YXLI/TIG-SVQA-main。

0
下载
关闭预览

相关内容

图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。
Top
微信扫码咨询专知VIP会员