Normalized mutual information is widely used as a similarity measure for evaluating the performance of clustering and classification algorithms. In this paper, we argue that results returned by the normalized mutual information are biased for two reasons: first, because they ignore the information content of the contingency table and, second, because their symmetric normalization introduces spurious dependence on algorithm output. We introduce a modified version of the mutual information that remedies both of these shortcomings. As a practical demonstration of the importance of using an unbiased measure, we perform extensive numerical tests on a basket of popular algorithms for network community detection and show that one's conclusions about which algorithm is best are significantly affected by the biases in the traditional mutual information.


翻译:归一化互信息被广泛用作评估聚类与分类算法性能的相似性度量。本文指出,归一化互信息返回的结果存在偏差,其原因有二:首先,该方法忽略了列联表的信息量;其次,其对称归一化过程会引入对算法输出的虚假依赖性。我们提出一种改进的互信息计算方法,可同时修正这两项缺陷。为实证使用无偏度量标准的重要性,我们对网络社区检测领域的一系列常用算法进行了大量数值测试,结果表明传统互信息的偏差会显著影响关于最优算法的判定结论。

0
下载
关闭预览

相关内容

互信息(Mutual Information)是信息论里一种有用的信息度量,它可以看成是一个随机变量中包含的关于另一个随机变量的信息量,或者说是一个随机变量由于已知另一个随机变量而减少的不肯定性.
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
42+阅读 · 2021年1月18日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
42+阅读 · 2021年1月18日
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员