Three-dimensional (3D) tooth instance segmentation remains challenging due to crowded arches, ambiguous tooth-gingiva boundaries, missing teeth, and rare yet clinically important third molars. Native 3D methods relying on geometric cues often suffer from boundary leakage, center drift, and inconsistent tooth identities, especially for minority classes and complex anatomies. Meanwhile, 2D foundation models such as the Segment Anything Model (SAM) provide strong boundary-aware semantics, but directly applying them in 3D is impractical in clinical workflows. To address these issues, we propose SOFTooth, a semantics-enhanced, order-aware 2D-3D fusion framework that leverages frozen 2D semantics without explicit 2D mask supervision. First, a point-wise residual gating module injects occlusal-view SAM embeddings into 3D point features to refine tooth-gingiva and inter-tooth boundaries. Second, a center-guided mask refinement regularizes consistency between instance masks and geometric centroids, reducing center drift. Furthermore, an order-aware Hungarian matching strategy integrates anatomical tooth order and center distance into similarity-based assignment, ensuring coherent labeling even under missing or crowded dentitions. On 3DTeethSeg'22, SOFTooth achieves state-of-the-art overall accuracy and mean IoU, with clear gains on cases involving third molars, demonstrating that rich 2D semantics can be effectively transferred to 3D tooth instance segmentation without 2D fine-tuning.
翻译:三维牙齿实例分割仍面临诸多挑战,包括牙弓拥挤、牙齿-牙龈边界模糊、牙齿缺失以及临床重要但罕见的第三磨牙。依赖几何线索的纯三维方法常出现边界泄漏、中心漂移和牙齿身份不一致等问题,尤其在少数类别和复杂解剖结构中更为明显。与此同时,二维基础模型(如Segment Anything Model (SAM))虽能提供强边界感知语义,但直接将其应用于三维临床工作流程并不现实。为解决这些问题,我们提出SOFTooth——一种语义增强、顺序感知的二维-三维融合框架,该框架无需显式的二维掩码监督即可利用冻结的二维语义。首先,点级残差门控模块将咬合面视角的SAM嵌入注入三维点特征,以优化牙齿-牙龈及牙齿间边界。其次,中心引导的掩码细化模块通过正则化实例掩码与几何质心间的一致性来减少中心漂移。此外,顺序感知匈牙利匹配策略将解剖学牙齿顺序与中心距离融入基于相似度的分配过程,确保即使在牙齿缺失或拥挤的情况下也能实现连贯的标记。在3DTeethSeg'22数据集上,SOFTooth取得了最优的整体准确率和平均交并比,在涉及第三磨牙的病例中提升尤为显著,这表明丰富的二维语义无需经过二维微调即可有效迁移至三维牙齿实例分割任务。