With the development of wireless communication, higher requirements arise for train-ground wireless communications in high-speed railway (HSR) scenarios. The millimeter-wave (mm-wave) frequency band with rich spectrum resources can provide users in HSR scenarios with high performance broadband multimedia services, while the full-duplex (FD) technology has become mature. In this paper, we study train-ground communication system performance in HSR scenarios with mobile relays (MRs) mounted on rooftop of train and operating in the FD mode. We formulate a nonlinear programming problem to maximize network capacity by allocation of spectrum resources. Then, we develop a sequential quadratic programming (SQP) algorithm based on the Lagrange function to solve the bandwidth allocation optimization problem for track-side base station (BS) and MRs in this mm-wave train-ground communication system. Extensive simulation results demonstrate that the proposed SQP algorithm can effectively achieve high network capacity for trainground communication in HSR scenarios while being robust to the residual self-interference (SI).
翻译:随着无线通信的发展,高速铁路(HSR)情景下的地面火车无线通信需求增加。具有丰富频谱资源的毫米波频波频带可以向HSR情景中的用户提供高性能宽带多媒体服务,而全复式(FD)技术已经成熟。在本文中,我们研究了HSR情景中的地面通信系统运行情况,在火车屋顶上安装了移动中继器,在FD模式下运行。我们提出了一个非线性化编程问题,以便通过分配频谱资源最大限度地扩大网络能力。然后,我们根据Lagrange函数开发了连续的二次二次方程式程序(SQP)算法,以解决这一毫米波地面地面通信系统中的轨道站和MR的带宽分配优化问题。广泛的模拟结果表明,拟议的SQP算法可以有效地实现高网络能力,在HSR情景下进行高水平的地面通信,同时对剩余自我干扰力。