We reconcile the two worlds of dense and sparse modeling by exploiting the positive aspects of both. We employ a factor model and assume {the dynamic of the factors is non-pervasive while} the idiosyncratic term follows a sparse vector autoregressive model (VAR) {which allows} for cross-sectional and time dependence. The estimation is articulated in two steps: first, the factors and their loadings are estimated via principal component analysis and second, the sparse VAR is estimated by regularized regression on the estimated idiosyncratic components. We prove the consistency of the proposed estimation approach as the time and cross-sectional dimension diverge. In the second step, the estimation error of the first step needs to be accounted for. Here, we do not follow the naive approach of simply plugging in the standard rates derived for the factor estimation. Instead, we derive a more refined expression of the error. This enables us to derive tighter rates. We discuss the implications of our model for forecasting, factor augmented regression, bootstrap of factor models, and time series dependence networks via semi-parametric estimation of the inverse of the spectral density matrix.
翻译:我们通过利用这两个要素的积极方面来调和密集和稀少的建模两个世界。 我们使用一个要素模型, 并假设[这些要素的动态是非无孔不入的, 而特异的术语遵循一个稀疏的矢量自动递减模型 (VAR) {, 它允许}跨部门和时间依赖。 估计分为两个步骤: 首先, 因素及其负荷是通过主元件分析估计的, 第二, 稀疏的 VAR是通过估计估计特性综合构件的正常回归来估计的。 我们证明拟议的估算方法是一贯的, 因为它的时间和跨部门层面不同。 在第二步, 第一步的估计错误需要说明。 在这里, 我们并不遵循简单插入系数估计得出的标准速率的天真的方法。 相反, 我们从中得出一个更精确的错误表达方式。 这使我们能够得出更精确的速率。 我们讨论我们的模型在预测、 系数增强回归、 参数测算器模型 模型 和时间序列依赖性网络的影响。