The recent emergence of deepfakes, computerized realistic multimedia fakes, brought the detection of manipulated and generated content to the forefront. While many machine learning models for deepfakes detection have been proposed, the human detection capabilities have remained far less explored. This is of special importance as human perception differs from machine perception and deepfakes are generally designed to fool the human. So far, this issue has only been addressed in the area of images and video. To compare the ability of humans and machines in detecting audio deepfakes, we conducted an online gamified experiment in which we asked users to discern bonda-fide audio samples from spoofed audio, generated with a variety of algorithms. 200 users competed for 8976 game rounds with an artificial intelligence (AI) algorithm trained for audio deepfake detection. With the collected data we found that the machine generally outperforms the humans in detecting audio deepfakes, but that the converse holds for a certain attack type, for which humans are still more accurate. Furthermore, we found that younger participants are on average better at detecting audio deepfakes than older participants, while IT-professionals hold no advantage over laymen. We conclude that it is important to combine human and machine knowledge in order to improve audio deepfake detection.


翻译:最近出现了深假,计算机化的、现实的多媒体假冒,从而发现被操纵和生成的内容。虽然提出了许多用于深假检测的机器学习模型,但人类的检测能力仍然远没有那么深入探讨。由于人类的认知与机器的感知不同,而深假一般是设计来愚弄人类的。迄今为止,这一问题只在图像和视频领域得到解决。为了比较人类和机器探测声音深假的能力,我们进行了一次在线合成实验,我们在这个实验中要求用户通过多种算法来辨别由深假声音生成的粘合式音频样本。200名用户竞拍8976轮游戏,使用人工智能(AI)算法进行音深假探测。我们发现,由于收集的数据,机器在探测声音深假音方面一般比人强,但对于某种攻击类型来说,人类仍然更精确。此外,我们发现较年轻的参与者在探测声音深音频的音频样本方面比老的参与者要好得多。我们发现,在深度的计算机探测过程中,我们没有掌握着重要和深刻的视听优势。

1
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年9月16日
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
150+阅读 · 2021年5月9日
专知会员服务
124+阅读 · 2020年9月8日
最新《Deepfakes:创造与检测》2020综述论文,36页pdf
专知会员服务
63+阅读 · 2020年5月15日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
6+阅读 · 2021年7月26日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
20+阅读 · 2020年6月8日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
AutoML: A Survey of the State-of-the-Art
Arxiv
71+阅读 · 2019年8月14日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年9月16日
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
150+阅读 · 2021年5月9日
专知会员服务
124+阅读 · 2020年9月8日
最新《Deepfakes:创造与检测》2020综述论文,36页pdf
专知会员服务
63+阅读 · 2020年5月15日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
已删除
创业邦杂志
5+阅读 · 2019年3月27日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员