We tackle the problem of recovering a complex signal $\boldsymbol x\in\mathbb{C}^n$ from quadratic measurements of the form $y_i=\boldsymbol x^*\boldsymbol A_i\boldsymbol x$, where $\boldsymbol A_i$ is a full-rank, complex random measurement matrix whose entries are generated from a rotation-invariant sub-Gaussian distribution. We formulate it as the minimization of a nonconvex loss. This problem is related to the well understood phase retrieval problem where the measurement matrix is a rank-1 positive semidefinite matrix. Here we study the general full-rank case which models a number of key applications such as molecular geometry recovery from distance distributions and compound measurements in phaseless diffractive imaging. Most prior works either address the rank-1 case or focus on real measurements. The several papers that address the full-rank complex case adopt the computationally-demanding semidefinite relaxation approach. In this paper we prove that the general class of problems with rotation-invariant sub-Gaussian measurement models can be efficiently solved with high probability via the standard framework comprising a spectral initialization followed by iterative Wirtinger flow updates on a nonconvex loss. Numerical experiments on simulated data corroborate our theoretical analysis.


翻译:我们解决了从表A_i\boldsymbol x_i\boldsymbol A_i\boldsymbol x$的二次测量中回收一个复杂的信号$\boldsymbol x_in\mathbb{C ⁇ C}C$ 的问题, 美元是一个完整的、复杂的随机测量矩阵, 它的条目来自一个旋转和不变化的亚毛虫/Gausian的分布。 我们把它设计成一个非convex损失的最小化。 这个问题与人们深知的阶段检索问题有关, 这个阶段的测量矩阵是一级-1正正正的半确定性矩阵。 我们在这里研究一个普通的全级案例, 用来模拟从远程分布和复合测量中模拟分子几类地测量, 例如在无相位差异成成像中进行分子几度恢复。 大多数以前的工作要么处理一级- 一案例, 或侧重于真实的测量。 一些论述全级复杂案例的文件采用了计算要求半确定性理论放松的方法。 在这张论文中, 我们可以证明, 旋转- 类问题的一般类别, 模拟- 正在以高度的模型 模拟的模拟的模型更新 数据流流流数据分析, 由高级的模型中解析的模型中, 。

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2021年6月16日
专知会员服务
76+阅读 · 2021年3月16日
自然语言处理现代方法,176页pdf
专知会员服务
267+阅读 · 2021年2月22日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
已删除
雪球
6+阅读 · 2018年8月19日
Arxiv
0+阅读 · 2021年6月15日
Arxiv
0+阅读 · 2021年6月14日
Arxiv
0+阅读 · 2021年6月14日
Arxiv
0+阅读 · 2021年6月12日
Arxiv
0+阅读 · 2021年6月12日
Learning the optimal regularizer for inverse problems
VIP会员
相关资讯
已删除
雪球
6+阅读 · 2018年8月19日
Top
微信扫码咨询专知VIP会员