It is extensively studied that Deep Neural Networks (DNNs) are vulnerable to Adversarial Examples (AEs). With more and more advanced adversarial attack methods have been developed, a quantity of corresponding defense solutions were designed to enhance the robustness of DNN models. It has become a popularity to leverage data augmentation techniques to preprocess input samples before inference to remove adversarial perturbations. By obfuscating the gradients of DNN models, these approaches can defeat a considerable number of conventional attacks. Unfortunately, advanced gradient-based attack techniques (e.g., BPDA and EOT) were introduced to invalidate these preprocessing effects. In this paper, we present FenceBox, a comprehensive framework to defeat various kinds of adversarial attacks. FenceBox is equipped with 15 data augmentation methods from three different categories. We comprehensively evaluated that these methods can effectively mitigate various adversarial attacks. FenceBox also provides APIs for users to easily deploy the defense over their models in different modes: they can either select an arbitrary preprocessing method, or a combination of functions for a better robustness guarantee, even under advanced adversarial attacks. We open-source FenceBox, and expect it can be used as a standard toolkit to facilitate the research of adversarial attacks and defenses.


翻译:人们广泛研究深神经网络(DNN)很容易受到反向攻击的例子(AEs)的影响。由于开发了越来越多的先进的对抗性攻击方法(AEs),设计了一批相应的防御解决方案,以加强DNN模型的稳健性。在推断排除对抗性扰动之前,利用数据增强技术来预处理输入样本已成为一种受欢迎的做法。通过模糊DNN模型的梯度,这些方法可以击败相当数量的常规攻击。不幸的是,采用了先进的梯度攻击技术(例如BPDA和EOT)来取消这些预处理效果。在本文件中,我们介绍了FenceBox,这是击败各种对抗性攻击的综合框架。FenceBox装备了来自三个不同类别的15种数据增强方法。我们全面评估了这些方法能够有效减轻各种对抗性攻击。FenceBox还提供APIS,用户可以方便以不同模式对模型进行防御:它们可以选择任意的预处理方法,或者将功能组合起来,以更好地保证其稳健性攻击,即使是在先进的对抗性攻击的先进研究工具之下,我们也可以期待Fox的防御。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员