This paper presents a comprehensive formulation of Kaneko's Error Diffusion Learning Algorithm (EDLA) and evaluates its effectiveness across parity check, regression, and image classification tasks. EDLA is a biologically inspired learning algorithm that provides an alternative to conventional backpropagation for training artificial neural networks. EDLA employs a single global error signal that diffuses across networks composed of paired positive and negative sublayers, eliminating traditional layer-wise error backpropagation. This study evaluates EDLA's effectiveness using benchmark tasks, such as parity check, regression, and image classification, by systematically varying the neuron count, network depth, and learning rates to assess its performance comprehensively. The experimental results demonstrate that EDLA achieves consistently high accuracy across multiple benchmarks, highlighting its effectiveness as a learning algorithm for neural networks. The choice of learning rate, neuron count, and network depth significantly influences EDLA's efficiency and convergence speed. Analysis of internal network representations reveals meaningful feature extraction capabilities, and the network's overall performance is found to be competitive with networks trained via conventional backpropagation, especially in shallow architectures. This study introduces EDLA, a biologically plausible alternative to traditional backpropagation previously underrecognized due to language barriers. By reformulating EDLA, systematically evaluating its performance, and presenting empirical evidence of its effectiveness, this study increases the visibility and accessibility of EDLA and contributes to biologically inspired training methodologies.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Top
微信扫码咨询专知VIP会员