Artificial Intelligence (AI) algorithms are increasingly providing decision making and operational support across multiple domains. AI includes a wide library of algorithms for different problems. One important notion for the adoption of AI algorithms into operational decision process is the concept of assurance. The literature on assurance, unfortunately, conceals its outcomes within a tangled landscape of conflicting approaches, driven by contradicting motivations, assumptions, and intuitions. Accordingly, albeit a rising and novel area, this manuscript provides a systematic review of research works that are relevant to AI assurance, between years 1985 - 2021, and aims to provide a structured alternative to the landscape. A new AI assurance definition is adopted and presented and assurance methods are contrasted and tabulated. Additionally, a ten-metric scoring system is developed and introduced to evaluate and compare existing methods. Lastly, in this manuscript, we provide foundational insights, discussions, future directions, a roadmap, and applicable recommendations for the development and deployment of AI assurance.


翻译:人工智能(AI)算法越来越多地在多个领域提供决策和业务支持。AI包括一个处理不同问题的广泛的算法图书馆。在实际决策过程中采用人工智能算法的一个重要概念是保证概念。不幸的是,关于保证的文献将其结果隐藏在由相互矛盾的动机、假设和直觉所驱动的相互冲突的方法的交织环境中。因此,尽管这个手稿是一个不断上升的新领域,但它系统地审查了1985至2021年期间与AI保证有关的研究工作,目的是提供一种结构化的替代环境。新的AI保证定义被采纳和提出,保证方法被对比和制成表格。此外,还开发并引入了十度评分系统,以评价和比较现有方法。最后,在这份手稿中,我们提供了基础见解、讨论、未来方向、路线图以及开发和部署AI保证的适用建议。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
A causal view on compositional data
Arxiv
0+阅读 · 2022年1月14日
A Survey on Data Augmentation for Text Classification
Arxiv
103+阅读 · 2021年6月8日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
A causal view on compositional data
Arxiv
0+阅读 · 2022年1月14日
A Survey on Data Augmentation for Text Classification
Arxiv
103+阅读 · 2021年6月8日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
35+阅读 · 2019年11月7日
Top
微信扫码咨询专知VIP会员