We present the first Africentric SemEval Shared task, Sentiment Analysis for African Languages (AfriSenti-SemEval) - The dataset is available at https://github.com/afrisenti-semeval/afrisent-semeval-2023. AfriSenti-SemEval is a sentiment classification challenge in 14 African languages: Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yor\`ub\'a (Muhammad et al., 2023), using data labeled with 3 sentiment classes. We present three subtasks: (1) Task A: monolingual classification, which received 44 submissions; (2) Task B: multilingual classification, which received 32 submissions; and (3) Task C: zero-shot classification, which received 34 submissions. The best performance for tasks A and B was achieved by NLNDE team with 71.31 and 75.06 weighted F1, respectively. UCAS-IIE-NLP achieved the best average score for task C with 58.15 weighted F1. We describe the various approaches adopted by the top 10 systems and their approaches.
翻译:我们提出了首个针对非洲语言的 SemEval 比赛,称为非洲语言情感分析(AfriSenti-SemEval)- 数据集可在 https://github.com/afrisenti-semeval/afrisent-semeval-2023 找到。AfriSenti-SemEval 是一个情感分类挑战,覆盖了14种非洲语言: 阿姆哈拉语,阿尔及利亚阿拉伯语,豪萨语,伊博语,基尼亚卢旺达语,摩洛哥阿拉伯语,莫桑比克葡萄牙语,尼日利亚皮钦语,奥罗莫语, 斯瓦希里语,提格里尼亚语,特威语、克松加语和约鲁巴语(Muhammad 等人,2023年),使用具有3个情感类别标记的数据。 我们提出了三个子任务:(1)任务A:单语言分类,收到44个提交;(2)任务B:多语言分类,收到32个提交;(3)任务C:零样本分类,收到34个提交。任务A和B的最佳表现分别由 NLNDE 团队获得,加权F1分别为71.31和75.06。UCAS-IIE-NLP 在任务C 中获得了最佳平均得分,加权F1 为58.15。我们描述了前10个系统及其方法采用的各种方法。