Contact tracing apps have become one of the main approaches to control and slow down the spread of COVID-19 and ease up lockdown measures. While these apps can be very effective in stopping the transmission chain and saving lives, their adoption remains under the expected critical mass. The public debate about contact tracing apps emphasizes general privacy reservations and is conducted at an expert level, but lacks the user perspective related to actual designs. To address this gap, we explore user preferences for contact tracing apps using market research techniques, and specifically conjoint analysis. Our main contributions are empirical insights into individual and group preferences, as well as insights for prescriptive design. While our results confirm the privacy-preserving design of most European contact tracing apps, they also provide a more nuanced understanding of acceptable features. Based on market simulation and variation analysis, we conclude that adding goal-congruent features will play an important role in fostering mass adoption.


翻译:联系追踪应用程序已成为控制并减缓COVID-19扩散和缓解封闭措施的主要办法之一,虽然这些应用程序在阻止传输链和拯救生命方面可以非常有效,但其采用仍然处于预期的临界水平。关于联系追踪应用程序的公开辩论强调一般隐私保留,在专家一级进行,但缺乏与实际设计有关的用户视角。为了解决这一差距,我们探索用户选择使用市场研究技术,特别是联合分析,进行联系追踪应用程序的偏好。我们的主要贡献是对个人和群体偏好的实证洞察力,以及对规范设计的洞察力。虽然我们的结果证实了大多数欧洲联系追踪应用程序的隐私保护设计,但它们也提供了对可接受特征的更细致的了解。基于市场模拟和变异分析,我们得出结论,增加目标连接特征将在促进大众采纳方面发挥重要作用。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关VIP内容
专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员